
STRINGS AND ARRAYS

Today

• This lecture will finish what we need to cover on strings:

– Functions that have strings as parameters.

• We will also talk more about arrays:

– Functions that take arrays as parameters

– Two-dimensional arrays

– Arrays of strings

• Finally we will talk about input and output of characters.

• Most of the code used in this lecture appears in the file
strings-and-arrays.cpp which you can download from the
class website.

cis1.5-fall2008-parsons-lectIV.4 2

Functions that have string parameters

• We have plenty of experience now writing functions that have,
for example, integer parameters.

• For example:

bool isItPositive(int number)
{

if(number >= 0)
{
return true;

}
else
{
return false;

}
}

cis1.5-fall2008-parsons-lectIV.4 3

• This takes one parameter, an integer, and returns true if the
integer is positive, false if the integer is negative.

• What if we want to pass a string to a function?

• Well, since string is a datatype, we can just use string as the
datatype of a parameter.

• For example:

int giveCombinedLength(string s1, string s2)
{

return s1.length() + s2.length();
}

takes two strings as arguments, and returns an integer that is the
sum of the lengths of the two strings.

cis1.5-fall2008-parsons-lectIV.4 4



• We can also have a string as a return type.

• This (rather silly) function:

string oddOrEven(int number)
{

if(number % 2 == 0)
{

return "even";
}
else
{

return "odd";
}

}

takes an integer as its argument and returns the string even if
the number is even, and the string odd if the number is odd.

cis1.5-fall2008-parsons-lectIV.4 5

• As for ints, chars and doubles, we can pass strings as
reference parameters.

• The function prototype:

void noChange(string s)

is for a function that does not have a string reference parameter,
while

void change(string &s)

is for a function that does have a string reference parameter.

• The program more-strings.cpp, on the course website,
illustrates the use of reference parameters with strings.

cis1.5-fall2008-parsons-lectIV.4 6

An array of strings

• Just as we can declare an array of integers, we can declare an
array of strings.

• To extend out DNA example, we can declare an array that
represents three genes:

string genes[3] = {"tatagg",
"gagattc", "cgcgttat"}

• A member of this array is then a string, and we can call do
everything to it that we can do to a string.

• For example:

genes[1].length();

will return 7, the length of gagattc.

cis1.5-fall2008-parsons-lectIV.4 7

• Because we can treat each string in genes as an array, we can
pick out an individual character from one of the members of
genes.

• Thus:

genes[2][1];

will return a g.

cis1.5-fall2008-parsons-lectIV.4 8



Two-dimensional arrays

• The arrays we have seen so far have allowed us to represent lists
of things.

• We can also represent lists of lists.

• The declaration

int grid[2][3];

declares an array that has two three element arrays of integers.

• We call such an array two dimensional.

• As with the arrays we have seen before, we can combine
declaring and initialising these arrays:

int grid[2][3] = {{1, 1, 1}, {2, 2, 2}};

cis1.5-fall2008-parsons-lectIV.4 9

• When we handle arrays with one dimension, we typically use a
for loop.

• When we handle arrays with two dimensions, we typically use
for loops that are nested.

• For example:

for(i = 0; i < 2; i++)
{

for(j = 0; j < 3; j++)
{

cout << grid[i][j] << endl;
}

}

• grid[i][j], of course, identifies a single integer.

cis1.5-fall2008-parsons-lectIV.4 10

Sending arrays to functions

• We call a function on an array as follows:

void printArray(int a[])

• This is a function with an argument that is a one dimensional
array of integers.

• Note that we don’t need to say how big the array is.

• If we have a two dimensional array as a function parameter, we
have to say how big the second dimension is:

void printGrid(int g[][3])

cis1.5-fall2008-parsons-lectIV.4 11

• Even for a one dimensional array, it is often helpful to say how
big the array is.

• It can make our functions more useful, for example.

• void printArray(int a[], int size)
{

int i;

for(i = 0; i < size; ++i){
cout << a[i] << " ";

}
}

can be called on arrays of different sizes, see
strings-and-arrays.cpp.

cis1.5-fall2008-parsons-lectIV.4 12



• Without the parameter size, we’d have to say what the upper
limit of the value of i was.

• That would make the function less flexible.

• Arrays are always sent to functions as reference parameters.

• To see an example of this, see strings-and-arrays.cpp

cis1.5-fall2008-parsons-lectIV.4 13

Character input

• When we have considered reading strings in from files, and
outputting strings, we have always thought about the whole
string.

• We can also do it character by character.

• Once we have declared:

char c;
ifstream myfile;
myfile.open("inputfile.txt");

we can use:

c = myfile.get();

to read in a character from inputfile.txt.

cis1.5-fall2008-parsons-lectIV.4 14

• Similarly, following:

outstream myOtherFile;
myOtherFile.open("outputfile.txt");

we can use:

myOtherFile.put(c);

to send a character to outputfile.txt.

cis1.5-fall2008-parsons-lectIV.4 15

Summary

• This lecture has finished our discussion of strings and arrays.

• We looked at functions that operate on strings.

• We looked at arrays of strings.

• We looked at multi-dimensional arrays.

• Finally, we looked at character input and output.

cis1.5-fall2008-parsons-lectIV.4 16


