
CIS 1.5 Fall 2009 Lab II.2

1. Putting things together

• On the next page is a longer program than others we have seen so far this term. It is called roomba.cpp.
It simulates the action of a robot moving around in a room. We will work on understanding and
modifying this code.

• Begin by entering the code into a new program called roomba.cpp. Prof Parsons has a copy of the
program on a memory stick which you can copy onto the laptop you are using.

• Compile and run it, to make sure that everything is working correctly.

2. Handling other input

• Notice that the user can enter either Q or q to quit the program.

• However, if the user enters f instead of F, the program does not recognize the lower case letter.

• Modify the code so that the user can enter either upper or lower case of all the possible input letters
(F or f, B or b, L or l, R or r and Q or q).

3. World’s end

• Like most rooms, the room the robot is wandering around in has walls and therefore has fixed di-
mensions. This means that the x and y values which indicate the robot’s location have limits. They
cannot be negative, and they cannot be greater than the size of the room.

• Assume that the minimum possible value for x is 0 and the maximum possible value is 10.

• Assume that the minimum possible value for y is 0 and the maximum possible value is 10.

• Modify the code so that the program prints out a message when the robot gets to the edge of the
room and another message when the robot is in a corner.

• Now modify the code to make sure that the x and y values do not exceed their limits.

Hint: If the robot’s x or y value reaches its minimum, then do not subtract anything from it.

Another Hint: If the robot’s x or y value reaches its maximum, then do not add anything to it.

4. Wrapping up

• Unlike physical rooms, in the virtual world, it is not uncommon for a bot to be able to “wrap around”.

• This means that if the bot wanders to the righthand edge of the room and keeps going in the same
direction, it will leave the screen and re-appear again at the leftmost edge.

• Similarly, if the bot wanders to the bottom edge of the room and keeps going in the same direction,
it will leave the screen and re-appear again at the top edge.

• Modify the code so that the robot will wrap around.

Hint: If the robot’s x or y value reaches its minimum, then set it to its maximum value.

Another Hint: If the robot’s x or y value reaches its maximum, then set it to its minimum value.

1



//----------------------------------------------------------------------

//

// roomba.cpp

//

// This program simulates a robot wandering around a room.

//// Written by: Elizabeth Sklar

// Modified by: Simon Parsons

//

// Last modified: 15th September

#include <iostream>

using namespace std;

int main()

{

// Declare variables

int x; // robot’s x position

int y; // robot’s y position

char c; // user’s input

bool q; // does user want to quit?

// Initialize variables

x = 0;

y = 0;

q = false;

// Loop until user enters Q to quit

while ( q==false ) {

cout << "the roomba is at location (" << x << "," << y << ")" << endl;

cout << "which way should roomba move (enter F,B,L,R or Q)? ";

cin >> c;

cout << "you entered: " << c << "\n";

if ( c==’F’ ) {

y = y + 1;

}

else if ( c==’B’ ) {

y = y - 1;

}

else if ( c==’L’ ) {

x = x - 1;

}

else if ( c==’R’ ) {

x = x + 1;

}

else if (( c==’Q’ ) || ( c == ’q’ )) {

q = true;

}

else {

cout << "Oops! you entered something invalid. please try again :-)" << endl;

2



}

} // end while q==false

} // end of main()

3


