
OUTPUT, VARIABLES AND ASSIGNMENT

Today

• Our first C++ program

• Output

• The software development cycle

• Variables

• Assignment and mathematical operators

cis1.5-fall2009-parsons-lectI.2 2

Our first C++ program

“hello world”

• Typical first program in any language

• Output only (no input)

cis1.5-fall2009-parsons-lectI.2 3

The source code

//--
// hello.cpp
//
// This program demonstrates output in C++
//
// Simon Parsons
// 2nd September 2008
//--

#include <iostream>
using namespace std;

int main()
{
cout << "This is my c++ world\n";
cout << "Hello from inside of it!\n";

}

cis1.5-fall2009-parsons-lectI.2 4

Line by line

• The lines that begin with // are comments.

• They describe what the program does, they don’t do anything

– The computer ignores them.

• The key part of the program is the cout.

• This tells the computer to print something on the screen.

• The “something” that is printed is the thing inside the " ".

– That is the meaning of the >>

cis1.5-fall2009-parsons-lectI.2 5

• #include <iostream> tells the compiler we will be doing
some output (or input)

• It prepares the computer to handle cout.

• int main()marks the start of the program.

– You can think of it as saying “here’s the main part of the
program”.

• We read { as “begin” and } as “end”.

• So, how do we read the whole program?

cis1.5-fall2009-parsons-lectI.2 6

Output

• Methods

cout

• Arguments

– Also called parameters

– Those things that follow cout

– << followed by a string, i.e., text in double quotes (")

– Escape sequences: \n, \t

• Example

cout << "Are Macs better than PCs?\n";

cout << "Are Macs better than PCs?" << endl;

cis1.5-fall2009-parsons-lectI.2 7

Things to notice

• C++ is CASE sensitive

• Punctuation is really important!

• Whitespace doesn’t matter for compilation

• BUT whitespace DOES matter for readability

– and your grade!

• In general, file name is same as class name.

• For now, file name is the same as project name.

cis1.5-fall2009-parsons-lectI.2 8

Let’s try it: the software development cycle

1. Open up a text editor or an IDE

2. Type in the source code and save it as a text file

3. Compile the source code,
using the g++ command or a menu option on the IDE

4. Execute the program, from the command line or from within the
IDE

cis1.5-fall2009-parsons-lectI.2 9

Data storage

• Think of the computer’s memory as a bunch of boxes

• Inside each box, there is a number

• You give each box a name
⇒ defining a variable

• Example:

Program code:

int x;

Computer’s memory:
x →

cis1.5-fall2009-parsons-lectI.2 10

Variables

• Variables have:

– name

– type

– value

• Naming rules:

– names may contain letters and/or numbers

– but cannot begin with a number

– names may also contain underscore ()

– can be of any length

– cannot use C++ keywords (also called identifiers)

– C++ is case-sensitive!!

cis1.5-fall2009-parsons-lectI.2 11

Assignment

• = is the assignment operator

• Example:

Program code:

int x;
// declaration
x = 19;
// assignment

or

int x = 19;

Computer’s memory:
x → 19

cis1.5-fall2009-parsons-lectI.2 12

Mathematical operators.

+ unary plus
− unary minus
+ addition
− subtraction
∗ multiplication
/ division
% modulo

Example:

int x, y;
x = -5;
y = x * 7;
y = y + 3;
x = x * -2;
y = x / 19;

What are x and y equal to?

Modulo means “remainder after integer division”

cis1.5-fall2009-parsons-lectI.2 13

Increment and decrement operators

• We are always increasing and decreasing values by one, so there
are shortcuts.

• Increment: ++

i++;

is the same as:

i = i + 1;

• Decrement: −−

i--;

is the same as:

i = i - 1;

cis1.5-fall2009-parsons-lectI.2 14

Assignment operators.

• There are shorthand ways of doing other combinations of
arithmetic and assignment.

+=

i += 3; is the same as: i = i + 3;

-=

i -= 3; is the same as: i = i - 3;

*=

i *= 3; is the same as: i = i * 3;

cis1.5-fall2009-parsons-lectI.2 15

• Also:

/=

i /= 3; is the same as: i = i / 3;

%=

i %= 3; is the same as: i = i % 3;

cis1.5-fall2009-parsons-lectI.2 16

Summary

• This lecture covered writing a first C++ program.

• We also sat down, wrote an initial program and ran it.

• We later discussed data and variables

• With the idea of a variable under our belts, we could start to
think about arithmetic and assignment.

• This makes it possible to write more interesting programs.

cis1.5-fall2009-parsons-lectI.2 17

