
VARIABLES AND STORAGE

Today

• Variables

• Data types

• Data storage

• Binary numbers

• ASCII

Some of this recaps what we did last lecture, most of it is new.

cis1.5-fall2009-parsons-lectI.3 2

Data types

• Programs = objects + methods

• Objects = data

– There is more to be said here, but we won’t say it until CIS 15.

• Data must be stored.

• All storage is numeric (0’s and 1’s)

cis1.5-fall2009-parsons-lectI.3 3

Data storage

• Think of the computer’s memory as a bunch of boxes

• Inside each box, there is a number

• You give each box a name
⇒ defining a variable

• Example:

Program code:

int x;

Computer’s memory:
x →

cis1.5-fall2009-parsons-lectI.3 4

Variables

• Variables have:

– name

– type

– value

• Naming rules:

– names may contain letters and/or numbers

– but cannot begin with a number

– names may also contain underscore ()

– can be of any length

– cannot use C++ keywords (also called identifiers)

– C++ is case-sensitive!!

cis1.5-fall2009-parsons-lectI.3 5

Intrinsic data types

Type Size Minimim value Maximum value

bool 1 bit 0 1

byte 8 bits −128 = −27 127 = 27
− 1

char 8 bits −128 = −27 127 = 27
− 1

short 16 bits −32, 768 = −215 32, 767 = −215
− 1

int 32 (or 16) bits −231(215) 231
− 1(215

− 1)

long 32 bits −231 231
− 1

float 32 bits ≈ −3.4E + 38, 7 sig. dig. ≈ 3.4E + 38, 7 sig. dig.

double 64 bits ≈ −1.7E + 308, 15 sig. dig. ≈ 1.7E + 308, 15 sig. dig.

“sig. dig.” = significant digits

cis1.5-fall2009-parsons-lectI.3 6

Assignment

• = is the assignment operator

• Example:

Program code:

int x;
// declaration
x = 19;
// assignment

or

int x = 19;

Computer’s memory:
x → 19

cis1.5-fall2009-parsons-lectI.3 7

Storage is binary

x→ 19

is really stored like this:

0 1 0 0 1 1

this is base 2!

1910 = 100112

cis1.5-fall2009-parsons-lectI.3 8

Remember bases?

Base 10:
362 = (2 * 1) + (6 * 10) + (3 * 100)

= (2 * 100) + (6 * 101) + (3 * 102)
Base 2:

1 = 20 = 1
10 = 21 = 2
100 = 22 = 4

1000 = 23 = 8
10000 = 24 = 16

...
so
100112 = (1 * 20) + (1 * 21) + (0 * 22) + (0 * 23) + (1 * 24)

= (1 * 1) + (1 * 2) + (0 * 4) + (0 * 8) + (1 * 16)
= 1910

cis1.5-fall2009-parsons-lectI.3 9

Base conversion: 2 to 10.

10101002 =

= =
(0 * 20) (0 * 1) 0

+ (0 * 21) + (0 * 2) + 0
+ (1 * 22) + (1 * 4) + 4
+ (0 * 23) + (0 * 8) + 0
+ (1 * 24) + (1 * 16) + 16
+ (0 * 25) + (0 * 32) + 0
+ (1 * 26) + (1 * 64) + 64

= 8410

cis1.5-fall2009-parsons-lectI.3 10

Base conversion: 10 to 2.

8410 =

84 / 2 = 42 rem 0
42 / 2 = 21 rem 0
21 / 2 = 10 rem 1
10 / 2 = 5 rem 0
5 / 2 = 2 rem 1
2 / 2 = 1 rem 0
1 / 2 = 0 rem 1

Read the remainders from the bottom up, and we get the binary
number we want:

8410 = 10101002

cis1.5-fall2009-parsons-lectI.3 11

Two tricks.

Base 8 (octal):
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Base 16 (hexadecimal, “hex”):
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A (10)
0011 3 1011 B (11)
0100 4 1100 C (12)
0101 5 1101 D (13)
0110 6 1110 E (14)
0111 7 1111 F (15)

• Replace each octal digit with 3 binary digits

• Replace every 3 binary digits with one octal digit

cis1.5-fall2009-parsons-lectI.3 12

• Thus 378 is 011111 in binary.

• And 101011 is 538

• Replace each hex digit with 4 binary digits.

• Replace every 4 binary digits with one hex digit

• Thus 3716 is 00110111 in binary.

• And 11110110 is F616

cis1.5-fall2009-parsons-lectI.3 13

Back to storage

x→ 19

is really stored like this:

31 30 ... 7 6 5 4 3 2 1 0
0 0 ... 0 0 0 1 0 0 1 1

• Bits are numbered, from right to left, starting with 0

• Highest (rightmost, “most significant”) bit is sign bit

cis1.5-fall2009-parsons-lectI.3 14

ASCII.

• ASCII = American Standard Code for Information Interchange

• Characters are stored as numbers

• Standard table defines 128 characters

• Example:

char c = ’A’;

‘A’ = 6510 = 010000012

c→
7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 1

cis1.5-fall2009-parsons-lectI.3 15

Casting
• Sometimes it is useful to be able to convert from one kind of
variable to another.

• For example, if we have:

int i;
char c = ’A’;

• We know that the A is really stored as the number 65, what if we
want to use that 65?

• We can’t just do:

i = c;

• But we can cast from char to int:

i = (int) c;

• The (int) is an operation that coverts the value in the variable
c, which is a char to be and int so that it can be stored in i.

cis1.5-fall2009-parsons-lectI.3 16

• We can cast between the types of variable that we have already
met.

int i = 10;
char c = ’A’;
double d = 3.5;

d = (double) c;
d = (double) i;
i = (int) c;

cis1.5-fall2009-parsons-lectI.3 17

• We can also do the following:

c = (char) d;
c = (char) i;
i = (int) d;

but there is a problem with this second batch of casts.

• The problem is that the variables we are casting into do not have
enough bits to store all the data that is being assigned.

• Some information will be lost

Like pouring a whole jug of water into a glass — you will end up
with some on the floor.

cis1.5-fall2009-parsons-lectI.3 18

Mathematical operators.

+ unary plus
− unary minus
+ addition
− subtraction
∗ multiplication
/ division
% modulo

Example:

int x, y;
x = -5;
y = x * 7;
y = y + 3;
x = x * -2;
y = x / 19;

What are x and y equal to?

Modulo means “remainder after integer division”

cis1.5-fall2009-parsons-lectI.3 19

Increment and decrement operators

• We are always increasing and decreasing values by one, so there
are shortcuts.

• Increment: ++

i++;

is the same as:

i = i + 1;

• Decrement: −−

i--;

is the same as:

i = i - 1;

cis1.5-fall2009-parsons-lectI.3 20

Assignment operators.

• There are shorthand ways of doing other combinations of
arithmetic and assignment.

+=

i += 3; is the same as: i = i + 3;

-=

i -= 3; is the same as: i = i - 3;

*=

i *= 3; is the same as: i = i * 3;

cis1.5-fall2009-parsons-lectI.3 21

• Also:

/=

i /= 3; is the same as: i = i / 3;

%=

i %= 3; is the same as: i = i % 3;

cis1.5-fall2009-parsons-lectI.3 22

Summary

• This lecture expanded on the idea of a variable.

• We considered how variables are represented in computer
memory.

• We mentioned binary, octal and hexidecimal.

• We talked about how to cast from one kind of variable to another.

• With the idea of a variable under our belts, we recapped
arithmetic and assignment.

cis1.5-fall2009-parsons-lectI.3 23

