INPUT, LOGICAL OPERATIONS, CONTROL
STRUCTURES

Today

¢ Input with ci n statement
e Thei f statement

® Relational operators

® Logical operators

e Truth tables

e Thei f - el se statement.
e The whi | e statement

cis1.5-fall2009-parsons-lectIL.1

Simple input
® We are already familar with output:
int x;
X = 5;
cout << ''The value of x is '’ << x << endl;

® C++ makes simple input just as straightforward:

int Xx;

cout << '"Enter a value for x: '';

cin >> x;

cout << ''The value of x is '’ << x << endl;

(We'll look at more complex input later).

cis1.5-fall2009-parsons-lectIl.1

e The function that reads input is the ci n.

e Note the use of the >>, which tells ci n which variable to read

the value into.

¢ The message:

cout << ''Enter a value for x:

is called a prompt.

e A prompt tells the user what to do.

cis1.5-fall2009-parsons-lectIl.1

'Why we need control structures

e So far, all we have seen is how to make a program do a sequence
of things.

—goNorth()
—goEast ()
—goNort h()

® There is more to life than this!
® We want to be able to make a program:

— Choose between doing different things
- Do the same thing several times

o C++ gives us control structures which allow us to do these things.

cis1.5-fall2009-parsons-lectll.1 5

The i f branching statement

e Perhaps the simplest control structure is the i f statement.
e Consider the robot from the homework.
¢ To tell when the robot is in the middle of the grid, we need to do:
if(x == 4) {
cout << "The robot is in the mddle";

}

e Let’s look at it in a bit more detail.

cis1.5-fall2009-parsons-lectIl.1 6

Thei f branching statement

e Thei f is a conditional
— Means the computer makes a choice
e It is also a control structure

e General structure:

if(<something that is true or fal se>)

{

<some instructions>

cis1.5-fall2009-parsons-lectIl.1 7

Boolean expressions|

® Boolean expressions are things that are true or false.
e Boolean variables: t r ue (1) or f al se (0)
e Logical operators:

I | not
&& land
[[or |

cis1.5-fall2009-parsons-lectIl.1 8

e Example:

bool ean a, b;
x =1; /] true
y =0; // false

if(x && y){

cout << "This is false\n";
}
f(x | y){

cout << "This is true\n";
}

cis1.5-fall2009-parsons-lectll.1

Truth tables

. a | b |ak&b| a | b |a]b]

a la true | true | true ‘ true | true true‘

false | true true | false | false true | false | true
true | false false | true | false false | true | true
false | false | false false | false | false

cis1.5-fall2009-parsons-lectIL.1

10

‘Relational operators‘

example:
== equality int x, y;
I= inequality X = -5
> greater than y =7,
< less than
>=| greater than or equal to so(m)e; trgt};/&) e
<=| Less than or equal to —
(x ==y) false
(x >=1y) |false

cis1.5-fall2009-parsons-lectIl.1

The i f branching statement (again)|

/] Is the robot still in the world?

if ((x < 10) & (y < 10))
{

cout << "The roonba is on the grid\n";

}

cis1.5-fall2009-parsons-lectIl.1

e And the actual code from the roombaGame:

if((x == dirtX) &y == dirty))
{

cout << "You found the dirt\n";

}

cis1.5-fall2009-parsons-lectll.1

Thei f - el se branching statement

¢ A neater way of doing some branching.
e This:

if((x == dirtX)&&(y == dirtVY)){
cout << "You found the dirt\n";

}
if((x !=dirtX)|](y '=dirty))){

cout << "You m ssed the dirt\n";

}

cis1.5-fall2009-parsons-lectIL.1

14

e Is a bit neater as:
if((x == dirtX)&&(y == dirtY))

{

cout << "You found the dirt\n";
}
el se
{

cout << "You missed the dirt\n";
}

cis1.5-fall2009-parsons-lectIl.1

e General structure:

if(<something that is true or false>)

{

<sone instructions>

}

el se

{
}

<alternative instructions>

cis1.5-fall2009-parsons-lectIl.1

the whi | e looping statement.

e whi | e allows us to repeat things:

/1 Go north 4 tines
count = O;

while (count <= 4)
{

}

goNort h();

cis1.5-fall2009-parsons-lectll.1 17

e General structure:

whi | e(<sonmething that is true or fal se>)

{

<sone instructions>

e This structure looks a lot like i f

cis1.5-fall2009-parsons-lectIL.1 18

Summary

® We talked about simple input using ci n.
e We covered some of the basic control structures:
—-if,while

e Along the way we looked at boolean expressions and relational
operators as well.

® Now it is time to read Chapter 2 of the textbook.

cis1.5-fall2009-parsons-lectIl.1 19

