
FOR LOOPS, FILE HANDLING AND RANDOM
NUMBERS

Today

• The for statement

• How to read data in from a file.

• How to write data out to a file.

• Generate random numbers

On the course website you can find the sample program
roombaLog which shows some aspects of filehandling.

cis1.5-spring2009-parsons-lectII.3 2

The for loop statement

• Imagine we put the following code in main in one of the
roomba examples:

• As usual x and y are the location of the robot.

int myCount;

for(myCount = 1 ; myCount <= 5 ; myCount++){

x = x + 1;
y = y + 1;

}

• This would increase the value of x and y (the position of the
robot) by 5.

cis1.5-spring2009-parsons-lectII.3 3

The for loop statement

• General structure:

for(<start>; <true or false> ; <change>)
{

<some instructions>

}

• This works as follows

cis1.5-spring2009-parsons-lectII.3 4



The for loop statement

• At the start of the loop, the instruction in <start> is carried out.

• We usually use this to set the value of a counter.

• Then <true or false> is tested to see if it is true or false.

• This is usually a test on the counter.

• If it is false, the program will skip to the } that marks the end of
the control structure.

• If it is true the <some instructions> are executed.

• Once they are done, the instruction in <change> is executed.

• This is usually something that changes the value of the counter.

• Then <true or false> is tested again.

• Thus <some instructions> will be repeatedly executed until
<true or false> becomes false.

cis1.5-spring2009-parsons-lectII.3 5

Examples

• Let’s go back to our initial example:

int myCount;

for(myCount = 1 ; myCount <= 5 ; myCount++){

x = x + 1;
y = y + 1;

}

• This increases the value of x and y by 5.

cis1.5-spring2009-parsons-lectII.3 6

• While:

int myCount;

for(myCount = 10 ; myCount > 5 ; myCount--)
{

x = x + 1;
y = y + 1;

}

would do the same, but with different values of myCount.

cis1.5-spring2009-parsons-lectII.3 7

• What about this one?

int myCount;

for(myCount = 3 ; myCount < 7 ; myCount++){

x = x + 1;
y = y + 1;

}

• This increases the value of x and y by 4.

cis1.5-spring2009-parsons-lectII.3 8



• What would

int myCount;

for(myCount = 2 ; myCount < 8 ; myCount+=2)
{

x = x - 1;
y = y + 1;

}

do?

cis1.5-spring2009-parsons-lectII.3 9

Using files

• In the same way as we use cin to read data from the keyboard,
we can read data from files.

• In the same way as we use cout to write data to the screen, we
can write data to files.

• This allows us to store information on the computer’s hard
drive, and to use it when we want it without having to type it in
each time.

cis1.5-spring2009-parsons-lectII.3 10

File preliminaries

• To use read and write data to a file, we will make use of some
library functions.

• To use these functions we need to add:

#include <fstream>

at the start of the program.

• We put this in the same place as:

#include <iostream>

cis1.5-spring2009-parsons-lectII.3 11

Simple input

• The function cin allows us to read input from the keyboard.

• A typical pattern of usage is:

cout << "Enter a number" << endl;
cin >> x;

which first prompts the user, then reads the next thing they type
into the variable x.

• Other examples of using cin can be found in the various
roomba programs on the course website.

• cin is the counterpart of cout.

cis1.5-spring2009-parsons-lectII.3 12



Reading from a file

• To read from a file, we have to tell the program three things:

– That we are going to read from a file.

– How we will refer to the file inside the program.

– What the name of the file on the hard drive is.

• We can do those three things using one command:

ifstream infile("commands.txt");

• The ifstream says we are going to read from a file.

• infile is the name we are going to use inside the program.

• patient.dat is the name of the file on the hard drive.

cis1.5-spring2009-parsons-lectII.3 13

• Alternatively we can write this as two commands:

ifstream infile;
infile.open("commands.txt");

cis1.5-spring2009-parsons-lectII.3 14

• Now that we have defined infile as an input stream, we can
read data from it.

• We use infilemuch like cin.

• Thus:

infile >> command;

reads the next character from the file into the variable command

• Once we have finished reading from the file, we close it:

infile.close();

cis1.5-spring2009-parsons-lectII.3 15

Writing to a file

• To write to a file, we have to tell the program three things:

– That we are going to write to a file.

– How we will refer to the file inside the program.

– What the name of the file on the hard drive is.

• Again we can do those three things using one command:

ofstream outfile("log.txt");

or using two commands:

ofstream outfile;
outfile.open("log.txt");

cis1.5-spring2009-parsons-lectII.3 16



• Once we have defined outfile as an output stream, we can send
data to it.

• We use outfilemuch like cout.

• Thus:

outfile << whatIDid;

sends the value of the variable whatIDid to the file.

• Once we have finished reading from the file, we close it:

outfile.close();

• When writing to a file it is important to close it — if the file isn’t
closed, the data that we have set to the file might not be stored in
it.

cis1.5-spring2009-parsons-lectII.3 17

File open modes

• When we open a file for writing, the computer discards any
information that is in the file.

• This is not always what we want to do.

• We can control what happens by specifying the file open mode.

• For example, instead of:

ofstream outfile;
outfile.open("log.txt");

we can have:

ofstream outfile;
outfile.open("log.txt", ios::app);

which will write new output to the end of the file.

cis1.5-spring2009-parsons-lectII.3 18

• There are other options.

outfile.open("log.txt", ios::trunc);

will discard any information in the file.

outfile.open("log.txt", ios::out);

will open the file for output, and is just another way to do:

outfile.open("log.txt");

• We also have:

outfile.open("log.txt", ios::nocreate);

which will fail to open the file if it doesn’t already exist.

cis1.5-spring2009-parsons-lectII.3 19

• Finally, we have have:

outfile.open("log.txt", ios::noreplace);

which will fail to open the file if it does already exist.

• noreplace is thus the dual of nocreate.

• There are also modes for input files.

• We have:

ifstream myfile;
myfile.open("commands.txt", ios::in);

which will open the file for input.

cis1.5-spring2009-parsons-lectII.3 20



Random numbers

• In the lab today we will use random numbers to perk up the
roomba example a little.

• To generate random numbers we use the function rand()

• For example;

int x;
x = rand();

• This assigns a random value to x. The value is somewhere
between 0 and (at least) 32767.

• To use rand(), we need to add #include<cstdlib> to our
program.

cis1.5-spring2009-parsons-lectII.3 21

• Each time we run our program rand() will produce some
(apparently) random numbers.

• But it will produce the same numbers each time we run the
program.

• To get different numbers each time we run the program, we need
to seed the random number generator.

• The usual way to do that is to add:

srand(time(NULL));

• The time(NULL) uses the clock to generate a seed.

• We have to add #include<ctime> to do this.

cis1.5-spring2009-parsons-lectII.3 22

Summary

• This lecture started with for loops.

• Then we looked at simple file handling.

• In particular, we looked at:

– reading data in from; and

– writing data out to

simple sequential files.

• Finally, we looked at how to generate random numbers.

cis1.5-spring2009-parsons-lectII.3 23


