
CALL-BY-REFERENCE

Today

• Today we will cover one of the trickiest things about functions

– Call-by-reference

• We will also discuss two new control structures:

– The do/while loop

– The conditional operator

cis1.5-fall2009-parsons-lectIII. 2

Reference parameters

• Last class we talked about how functions can pass parameters

– How the value of those parameters might change inside the
function

– But in the calling function, the value of the parameters does not
change

• We also talked about scope

– How the variables we have defined have scope local to the
function they are called in.

– How these local variables “go away” when the function exits

cis1.5-fall2009-parsons-lectIII. 3

• call-by-value example:

#include <iostream>
using namespace std;

int add(int a, int b) {
int ret;
ret = a + b;
return(ret);

} // end of add()

int main() {
int p = 7, q = 5, sum;
sum = add(p, q);
cout << "sum=" << sum << endl;

} // end of main()

cis1.5-fall2009-parsons-lectIII. 4

inside add():

using namespace std;

int add(int a, int b) {
 int ret;
 ret = a + b;
 return(ret);
} // end of add()

int main() {
 int p=7, q=5, sum;
 sum = add(p, q);
 cout << "sum=" << sum << endl;
} // end of main()

function arguments:
the values of p and q are used to initialize the
values of the parameters (a,b) inside the function

value parameters:
the initial values of a and b are set based on the values
of the arguments used to call the function

function return:
the value of "sum" is assigned to the function’s return value

return value:
the value of "ret" is returned by the function to the caller

7

P

5

q

12

sum

12

ret

7

a

5

b

inside main():

#include <iostream>

cis1.5-fall2009-parsons-lectIII. 5

• In C++, there is a feature of functions called reference parameters.

• This lets you pass what is called the “address” of a variable to a
function.

• This means that it is the variable itself rather than a copy that
gets passed to the function.

• As a result, when the function exits, if the value of the variable
has changed inside the function, then the new value can be
retained outside the function.

cis1.5-fall2009-parsons-lectIII. 6

• The classic example of using reference parameters is a function
called swap()

void swap(int &a, int &b)
{

int tmp;
tmp = a;
a = b;
b = tmp;
return;

}

cis1.5-fall2009-parsons-lectIII. 7

• The operation of this slightly different function is much different:

void noSwap(int c, int d)
{

int tmp;
tmp = c;
c = d;
d = tmp;
return;

}

• The best way to get to grips with reference parameters is to write
some code that uses them.

cis1.5-fall2009-parsons-lectIII. 8

• Another example

#include <iostream>
using namespace std;

void add(int a, int b, int &sum) {
sum = a + b;

} // end of add()

int main() {
int p = 7, q = 5, sum;
add(p, q, sum);
cout << "sum=" << sum << endl;

} // end of main()

cis1.5-fall2009-parsons-lectIII. 9

inside main():

7

P

5

q

12

sum

7

a

5

b

reference parameter:
the value of "sum" is changed both inside the function and
within the scope of the caller

value parameters:
the initial values of a and b are set based on the values
of the arguments used to call the function

#include <iostream>
using namespace std;

int main() {
 int p=7, q=5, sum;

 cout << "sum=" << sum << endl;
} // end of main()

void add(int a, int b, int &sum) {
 sum = a + b;
} // end of add()

 add(p, q, sum);

12

sum

inside add():

function arguments:
the values of p and q are used to initialize the
values of the parameters (a,b) inside the function;
the value of sum is changed inside the function call and,
because it is a reference parameter, the new value is
retained when the function exits and assigned to the
value of the argument in main()

cis1.5-fall2009-parsons-lectIII. 10

The do/while loop

• If we want to read six numbers from the ifstream myfile we
might use a for loop:

for(counter = 0; counter < 6; counter++)
{
myfile >> numbers[counter];

}

• This is fine so long as we know that there are at least six numbers
in the file.

• Sometimes we are not so lucky.

• We want to read in up to six numbers, but there may not be as
many as that.

cis1.5-fall2009-parsons-lectIII. 11

• In such a case (which is not uncommon) we might want to do the
following:

do {
myfile >> numbers[counter];
counter++;

}
while(counter < 6 && myfile);

• The second myfile is true so long as the last read from the file
returned something.

• Thus when we get to the end of the file, myfile is false, and the
loop ends.

cis1.5-fall2009-parsons-lectIII. 12

• This is an example of a do/while loop.

• This is subtly different from a while loop.

• The general form of the loop is:

do {

<some instructions>

}
while(<a condition that is true or false>);

• Note the semicolon at the end of the line with the while on it.

cis1.5-fall2009-parsons-lectIII. 13

• The big difference between do/while and while is how many
times the body of the loop gets repeated.

– The body of the loop is the bit between the { and the }

• In a while loop, if the condition is false, the body is never
executed.

• In a do/while loop, even if if the condition is false, the body
is executed at least once.

• This difference helps us to decide which control structure is best
to use.

cis1.5-fall2009-parsons-lectIII. 14

• Another way to achieve the same thing is to do:

while(counter < 6 && !myfile.eof()) {
myfile >> numbers[counter];
counter++;

}

• The function myfile.eof() returns true if we are at the end of
the file.

• Thus, once again, when we get to the end of the file, the loop
terminates.

cis1.5-fall2009-parsons-lectIII. 15

The conditional operator

• C++ contains a compact version of if else, which can
sometimes be useful.

• <condition> ? <if true> : <if false>

• If the condition is true, the bit between the ? and the : gets
executed.

• If the condition is false, the bit between the : and the ; gets
executed.

cis1.5-fall2009-parsons-lectIII. 16

• Thus

if (a >= b)
{

y = a;
}
else
{

y = b;
}

can be written as:

y = a <= b ? a : b;

cis1.5-fall2009-parsons-lectIII. 17

Summary

• This lecture has described call-by-reference, when we use reference
parameters.

• The behavior of call-by-reference is in contrast to what we see
when we use the (normal) call-by-value.

• This lecture also looked at do/while loops and the conditional
operator.

cis1.5-fall2009-parsons-lectIII. 18

