
ARRAYS

Today

• How we can use arrays to hold sets of related data.

• Common patterns of handing data:

– Finding the largest element

– Summing up elements

– Counting elements with some feature.

• You should read these notes in conjunction with the programs in
arrays.cpp and the patient record example in patient.cpp.

cis1.5-fall2009-parsons-lectIV.1 2

What is an array?

• You can think of an array as a set of variables which are grouped
together, all using the same identifier.

• Just as

int a;

declares an integer variable with the name a, then

int b[5];

declares an array of 5 integers, with the name b.

• The square brackets [] are the crucial bit of syntax, telling the
compiler it is dealing with an array.

cis1.5-fall2009-parsons-lectIV.1 3

• Whereas

int a;

reserves space for one integer in memory and associates the
name a with it:

a

cis1.5-fall2009-parsons-lectIV.1 4

the declaration

int b[5];

reserves space for five integers in memory right next to one
another.

b

cis1.5-fall2009-parsons-lectIV.1 5

• Elements of the array b are just integers, and we can do exactly
the same things to them that we can do to integers.

• The only difference is how we address them.

• While we can assign a value to a by:

a = 5;

To do the same to one of the elements of b, we have to specify
which element it is. For example:

b[1] = 5;

• Thus all of the following are legal operations:

b[1] += 2;
b[2] = 7 % 3;
b[3] = b[2] - 5;
b[4] = b[1]/b[3];

cis1.5-fall2009-parsons-lectIV.1 6

• One thing to be careful of is the limits on the index, that is the
number inside the square brackets [].

• The first element of an array always has index 0.

• So the first element of b is:

b[0]

and, since b has 5 elements, the last element of b is:

b[4].

• In computer science we start counting at 0.

• Every C++ programmer forgets this from time to time.

cis1.5-fall2009-parsons-lectIV.1 7

Declaring and initialising

• We already talked about how to declare an array.

• For example:

int age[8];

declares an array of 8 ints called age.

• We can have arrays of any data type. For example:

double numbers[5];
char sentence[30];

declares an array of 5 doubles called number, and an array of
30 chars called sentence.

cis1.5-fall2009-parsons-lectIV.1 8

• We can initialise these arrays when we declare them, just as we
can for other kinds of variable:

int age[8] = {5, 10, 15, 20, 25, 30, 35, 40}

• Initialising like means that:

cout << age[0] << endl;
cout << age[6] << endl;

will produce:

5
35

since, as we mentioned before, the first element in the array has
subscript 0.

cis1.5-fall2009-parsons-lectIV.1 9

• If instead we initialised with:

int age[10] = {5, 10, 15, 20, 25, 30}

then

cout << age[0] << endl;
cout << age[6] << endl;

would produce:

5
0

since any values we do not explicitly assign in the initialisation
will be set to 0.

cis1.5-fall2009-parsons-lectIV.1 10

• Declaring:

double number[5] = {5.0, 10.1, 20.2, 30.3};

would set number[4] to 0.

• Declaring:

char sentence[30] = {’H’, ’e’, ’l’, ’l’, ’o’}

would set all elements of sentence after the ’o’ to ’ ’.

cis1.5-fall2009-parsons-lectIV.1 11

Handling arrays

• Arrays are commonly handled using for loops.

• Thus, to print out the array age, we might use:

for(counter = 0; counter < 8; counter++)
{
cout << age[counter] << " ";

}

• This will take each element of age in turn and send it to cout.

• Note that the maximum value of the subscript counter is 7.

cis1.5-fall2009-parsons-lectIV.1 12

• In C++ it is very important to be careful with the maximum
value of the subscript of an array.

• If you overflow an array, for example by doing:

age[10] = 30;

this will not generate an error.

• However, it may cause your program to crash in an unexpected
way.

cis1.5-fall2009-parsons-lectIV.1 13

• Often, when handling arrays, we want to use the same subscript
to access two or more arrays.

• For example:

for(counter = 0; counter < 5; counter++)
{
number[counter] = 2 * age[counter];

}

• This replaces each element of number with double the
corresponding element of age

cis1.5-fall2009-parsons-lectIV.1 14

Modifying elements in an array

• Of course, since each element of age is an integer, we can do to
each element, exactly what we can do to an integer.

• All we have to do is remember how to address each element of
the array, using a subscript.

• For example:

for(counter = 0; counter < 8; counter++)
{
age[counter]++;
age[counter] = (age[counter] * 2)/3;

}

• What does this do to each element of the array age?

cis1.5-fall2009-parsons-lectIV.1 15

Functions and array elements

• Since elements of age are integers, we can call functions on them

• If we have the function

int timesTwo(int number)
{

return 2 * number;
}

we can call this on the third member of age like so:

timesTwo(age[2]);

cis1.5-fall2009-parsons-lectIV.1 16

Manipulating subscripts

• The subscript that we use to identify elements of an array is also
just an integer.

• So we can use arithmetic expressions as subscripts, so long as they
evaluate to integers.

• For example

cout << age[2+1];
cout << age[counter - 2];
cout << age[age[0]];
cout << age[timesTwo(age[2])];

cis1.5-fall2009-parsons-lectIV.1 17

A bigger example

• The program patient.cpp is a larger example of using arrays.

• The program is a simple patient record system, which reads
information on patients in from a file and puts part of it into two
different arrays.

• The program then manipulates the arrays in a few different
ways.

• The arrays are diseases[] and ages[].

• In this example, they are both 7 elements long

int age[7];
int diseases[7];

cis1.5-fall2009-parsons-lectIV.1 18

for(counter = 0; counter < 7 ; counter++)
{

infile >> idNumber; // Read data in from
infile >> age; // file.
infile >> disease;
infile >> zipCode;

// Store disease and age data in arrays

diseases[counter] = disease;
ages[counter] = age;

printRecord(); // Print data
}

cis1.5-fall2009-parsons-lectIV.1 19

• Once the information is in the array, we can do all kinds of stuff
with it.

• We can, for example, print out the values in reverse order:

cout << endl << "Diseases in reverse order" << endl;

for(counter = 6; counter >= 0; counter--)
{

cout << diseases[counter] << endl;
}

cis1.5-fall2009-parsons-lectIV.1 20

• Another thing we can do is to count up how many times we find
some value in the array.

• The value we are looking for is in the variable disease

for(counter = 0; counter < 7; counter++)
{
if(diseases[counter] == disease)
{
numberOfDiseases += 1;

}
}

• This is one common pattern of using a loop to summarize some
information.

cis1.5-fall2009-parsons-lectIV.1 21

• A slightly different summarization would be look look for oldest
patient. (The patient with the largest age.)

• We collect the largest age in the variable oldest:

int oldest = 0;

for(counter = 0; counter < 7; counter++)
{
if(ages[counter] > oldest)
{
oldest = ages[counter];

}
}

• We could also store the value of counter that corresponds to
the highest age, and then we could look at other aspects of the
oldest patient.

cis1.5-fall2009-parsons-lectIV.1 22

• A third, and final summarization is to add up, and then compute
the average of, the patient ages:

int sumOfAges = 0;

for(counter = 0; counter < 7; counter++)
{
sumOfAges += ages[counter];

}

cout << endl << "Average age is ";
cout << endl << sumOfAges / 7.0 << endl;

• We divide by 7.0 in order to force the result to be a decimal
fraction.

• If we didn’t do this, we would be dividing one integer by
another, and we’d get an integer result.

cis1.5-fall2009-parsons-lectIV.1 23

Constants

• One thing to notice with all of these arrays is that we have been
writing 7, the size of the array, a lot.

• What would happen if we decided we now needed the array to
hold 10 elements?

• Well, we’d have to make lots of changes.

• Each change gives us the chance to make a mistake.

• There is a way to reduce the number of changes, and that is to
use a constant.

cis1.5-fall2009-parsons-lectIV.1 24

• We define a constant using the keyword const:

const int LENGTH = 7;

• By convention we give a constant a name that is all capitals.

• We can then use LENGTH wherever we need the number 7:

int diseases[LENGTH];

for(counter = 0; counter < LENGTH; counter++)
{

sumOfAges += ages[counter];
}

and so on.

cis1.5-fall2009-parsons-lectIV.1 25

Summary

• This lecture has looked in some detail at arrays.

• We examined the declaration and initialization of arrays.

• We looked at handling arrays using for loops, and by playing
with subsscript values.

• We looked at different things one can do with array elements.

• In particular, we looked at some different common things we do
with arrays.

• Finally we looked at a common use for const.

cis1.5-fall2009-parsons-lectIV.1 26

