
STRINGS

Today

• Recap a little on arrays.

• Introduce strings.

• Describe some of the uses of strings

• Show how strings and arrays are related.

• You can find the examples from this lecture in the file
strings.cpp

cis1.5-fall2009-parsons-lectIV.2 2

Recapping arrays

• We talked before about how we define arrays and set values for
the members of the array.

• For example:

char s[5] = {’S’, ’i’, ’m’, ’o’, ’n’}

defines an array of characters, called a, and sets its elements to
have the letters of the word Simon.

• We can access the elements of the array using the index notation:

a[2]

for example, refers to the element of the array awith number 2.

cis1.5-fall2009-parsons-lectIV.2 3

• This is a character (since a is an array of characters).

• We can do to a[2] exactly the same things we can do to any
character variable.

• For example we can print it out:

cout << a[2];

which will print out:

m

• We can also assign it a new value:

a[3] = ’t’;

cis1.5-fall2009-parsons-lectIV.2 4



Strings

• To deal with strings, we need to add:

#include<string>

at the start of our program.

• With that in place, we can define variables whose type is
string:

string s1 = "Hello";
string s2 = "Simon";
string s3, s4;

• This defines s1 to be a string variable whose value is the word
Hello, and s2 to be a string variable who value is the word
Simon.

• It also defines s3 and s4 to be strings, but does not give them a
value.

cis1.5-fall2009-parsons-lectIV.2 5

• Since s1, s2, and s3 are variables, we can do a lot of the kinds of
things we can do to other variables to them.

• We can assign values to them and print their values out.

• For example:

s3 = s2;
cout << s3;

will generate:

Simon

cis1.5-fall2009-parsons-lectIV.2 6

• You can also test the value of two strings

• The expression

s1 == s2

will return true if the letters in the same location in both strings
are the same.

• This won’t be true since the first letters, H and S are different.

• However, given the value we assigned to s3:

s1 == s3

will return true.

cis1.5-fall2009-parsons-lectIV.2 7

• Another expression we can evaluate is:

s1 < s2

• (We might want to use this in an if).

• C++ evaluates s1 < s2 by taking the first character in s1 and
seeing if it is less than the first character in s2.

• If yes, then it returns true.

• If no, then it returns false

• If the characters are the same, the same question is asked of the
second character in both strings.

• If every character in s1 is the same as in s2 then <will
eventually return false.

cis1.5-fall2009-parsons-lectIV.2 8



• How does C++ tell whether one character is less than another?

• It uses the ASCII value (which we talked about earlier in the
semester).

• All you probably need to know about these values is that:

0 < 1 < 2 < 3 < ...< 9

9 < A < B < C < ...< Z

Z < a < b < c < ...< z

• So Hello is less than Simon, because H is not less than S.

• But Hello is not less than Hella

• The other comparison operations (>, <= and >=) behave
similarly.

cis1.5-fall2009-parsons-lectIV.2 9

Concatenation

• One operation that is specific to strings is concatenation

• For example:

s3 = s1 + s2;
cout << s3;

• The first line tells C++ to concatenate s1 and s2 and assign the
result to s3.

• Thus s3 now has the value of s1 followed by the value of s2.

cis1.5-fall2009-parsons-lectIV.2 10

• When we print, we get:

HelloSimon

• There is no space because neither s1 or s2 has a space.

s3 = s1 + " " + s2;
cout << s3

would produce:

Hello Simon

• Note that

s3 += s2;

is just the same as:

s3 = s3 + s2;

cis1.5-fall2009-parsons-lectIV.2 11

Reading in strings

• One way to read in a string from the user is

cin >> s3;

• This is fine if you want to read in strings like:

Hello

and

Roustabout

but no good if you want to read in:

What time is love?

• In fact, depending on your implementation of C++, cinmay not
handle strings even this well.

cis1.5-fall2009-parsons-lectIV.2 12



• The problem is that cin stops reading at the first whitespace.

• So, if our program has:

cout << "Now type a string"; cin >> s3;

and the user types:

What time is love?

in response to the prompt, then s3will have the value What.

cis1.5-fall2009-parsons-lectIV.2 13

• The way around this problem is to use the function getline.

• There are two ways to use getline.

• Like this:

cout << "Now type a string";
getline(cin,s3);

it will read everything up to the point the user hits the return
key, and assign this to s3.

• This is fine for reading in What time is love?

cis1.5-fall2009-parsons-lectIV.2 14

• We can also call getline with a third parameter.

• This parameter is a character, called a delimiter, which tells
getline when to stop reading.

• If our program has:

cout << "Now type a string";
getline(cin,s3,’,’);
getline(cin,s4,’.’);

and the user types:

I stumbled out of bed, I got ready for the struggle.

then . . .

cis1.5-fall2009-parsons-lectIV.2 15

• s3 will have the value

I stumbled out of bed

and s4 will have the value

I got ready for the struggle

• Note that the delimiters are not read in, and so don’t end up in
either string.

cis1.5-fall2009-parsons-lectIV.2 16



• We can also use getline to read strings from a file.

• For example

ifstream myInputFile;
myInputFile.open("sequence.txt");
getline(myInputFile,s3);

will read the first line of the file sequence.txt into the string
variable s3, while

ifstream myInputFile;
myInputFile.open("sequence.txt");
getline(myInputFile,s4,’t’);

will read the first line of the file sequence.txt up to the first t
into the string variable s4.

cis1.5-fall2009-parsons-lectIV.2 17

From strings back to arrays

• As we hinted at the end of last lecture, strings are just arrays of
characters.

• A string variable like s1 is just another way of dealing with an
array of characters like a that we started the lecture with.

• As a result we can do things like:

s2[1] = ’u’;
cout << s2;

to produce:

Sumon

cis1.5-fall2009-parsons-lectIV.2 18

• And we can use a for loop to manipulate an array.

• For example:

for(i = 4; i >= 0; i--) {
cout << s2[i];

}

will produce:

nomuS

cis1.5-fall2009-parsons-lectIV.2 19

Member functions

• There are lots of functions in the string library.

• These are member functions of the string class.

• The idea of member function will make more sense later in the
course when we have covered classes.

• But for now, you just have to know that in C++, a string is a class,
and classes come along with member functions or methods that
operate on them.

• In fact we already met some of these member functions:

– cout.precision

– infile.open

cis1.5-fall2009-parsons-lectIV.2 20



• An obvious thing to find out about a string is how long it is.

int len
len = s3.size();

will do this for the string s3.

• So will:

len = s3.length();

• So far as I can tell, length and size give exactly the same thing.

cis1.5-fall2009-parsons-lectIV.2 21

Replacing part of a string

• If we want to swap one bit of a string for another, we can use
replace.

• For example:

s3.replace(3, 2, "pp");

will replace the 2 characters that start in place 3 of the string s3
with the string pp.

cis1.5-fall2009-parsons-lectIV.2 22

Extracting part of a string

• If we want to grab a bit from the middle of a string, we can use
substr.

• This extracts a substring from the string we apply it to.

• For example:

s4 = s3.substr(6, 2);

will copy the 2 characters that start in place 6 of the string s3
into the string s4.

cis1.5-fall2009-parsons-lectIV.2 23

Deleting the contents of a string

• s3.erase() will set s3 to contain no characters.

• This is the same as doing:

s3 = "";

cis1.5-fall2009-parsons-lectIV.2 24



Summary

• This lecture started to look at strings.

• We briefly recapped arrays.

• We described how to define strings, and what operations you
can carry out on them.

• We described how to read them into a program.

• We dealt briefly with the relationship between strings and
arrays.

• We looked at some member functions.

cis1.5-fall2009-parsons-lectIV.2 25


