
MORE ON STRINGS

Today

• Last time we looked at some basic operations one can carry out
on strings

• This time we will look at more complex operations.

• We will also look at some operations which are not strictly to do
with strings, but which can be useful in dealing with strings.

cis1.5-fall2009-parsons-lectIV.3 2

More member functions

• Last time we saw how to find the length of a string.

int len;
string dna;

len = dna.length();

will do this for the string dna.

• It turns out that:

len = dna.size();

does much the same.

• So far as I can tell, length and size give exactly the same thing.

cis1.5-fall2009-parsons-lectIV.3 3

• Now, stroctly speaking, len shouldn’t be an int.

• We should really use:

string::size_type len;

• In other words, what gets returned by size and length is a
value of type string::size type.

• If you try to use int you may find some strange compiler errors
crop up.

cis1.5-fall2009-parsons-lectIV.3 4

Finding things in strings

• Often we want to look for things in a string.

• C++ allows us to do this:

string::size_type pos;
pos = dna.find("tata", 0);

pos gives the location of the start of the first occurence of the
string tata in the string dna.

The 0 says to start looking from the first character in dna. (Since
the string is an array, the first character is numbered 0).

• We can also look for a single character:

pos = dna.find(’c’, 0);

cis1.5-fall2009-parsons-lectIV.3 5

• If dna.find doesn’t find the thing we are looking for, it returns
the value dna.npos.

• This gives us a neat way to search for things in dna.

• We keep looking until we get dna.npos.

• So, to count how many times we have g in dna, we would do
this:

int countG = 0;

pos = dna.find(’g’,0);
while (pos != dna.npos)
{

countG++;
pos = dna.find(’g’, pos + 1);

}

cis1.5-fall2009-parsons-lectIV.3 6

• This code works as follows:

1. We look for g starting at the beginning of the string.

2. If we don’t get npos we have found a g, so increase the
counter.

3. Look again, starting with the character just after the one you
just found.

4. Go to 2.

• This is a common way of using a while loop.

cis1.5-fall2009-parsons-lectIV.3 7

Erase and insert

• Last time we saw how to use replace to exchange one bit of a
string for another.

• To swap two bits of a string that aren’t the same length, we have
to first erase one and then insert another.

• For example:

dna.erase(7, 4);
dna.insert(7, "ctctc");

will remove the four characters of dna that start with the
character in place number seven, and then insert the string
ctctc at the same place.

cis1.5-fall2009-parsons-lectIV.3 8

• A slightly more sophisticated use of insert and erase is:

pos = dna.find("ggaa", 0);
dna.erase(pos, 4);
dna.insert(pos, "tatatt");

• This finds the location of the first string ggaa, erases four
characters at that position, and then inserts tatatt in the
same place.

• The overall effect is to replace ggaa with tatatt

cis1.5-fall2009-parsons-lectIV.3 9

One other thing

• Just as we can concatenate two strings using +

dna = dna + dna2;

we can combine concantenation and assignment using +=

dna += dna2;

cis1.5-fall2009-parsons-lectIV.3 10

cctype

• When we are processing strings, it is often useful to be able to
identify what individual characters are.

• Clearly we can do this like so:

string s1

if(s1[2] == ’c’){
...
}

testing individual characters from a string against specific
character constants.

cis1.5-fall2009-parsons-lectIV.3 11

• This is fine if we want to test against individual values, but is
less helpful if we want, for example, to know if a specific
character from a string is a lower case letter.

• Luckily there are some library functions that can help us out.

• The header file to use is

#include <cctype>

for the C-library cctype

• This includes the following functions.

• Note that they take an integer as an argument — you have to
cast a character as an integer in order to use them, and return an
integer.

• For most of the functions we want a true/false answer and if the
integer that is returned is 0, that means false. If the integer is
non-zero, that means true.

cis1.5-fall2009-parsons-lectIV.3 12

• These are some ofthe more useful functions:

• int isalnum(int c) checks if character argument is
alphanumeric

• int isalpha(int c) checks if character argument is
alphabetic

• int isdigit(int c) checks if character argument is a
decimal digit

• int islower(int c) checks if character argument is a
lowercase letter

cis1.5-fall2009-parsons-lectIV.3 13

• int ispunct(int c) checks if character argument is a
punctuation character

• int isupper(int c) checks if character argument is an
uppercase letter

• int tolower(int c) converts uppercase letter argument
to lowercase

• int toupper(int c) converts lowercase letter argument
to uppercase

• For these last two, the integer that is returned is the ASCII value
of the corresponding letter — you’ll have to cast it to a character.

• The on-line reference for cctype is: http:
//www.cplusplus.com/reference/clibrary/cctype/

cis1.5-fall2009-parsons-lectIV.3 14

#include <iostream>
#include <cctype>
using namespace std;

int main() {
bool q = false;
char c;
while (! q) {
cout << "enter a character (q to quit): ";
cin >> c;
cout << "you entered: " << c << endl;
if (islower((int)c)) {
c = (char)toupper(c);

}
cout << "upper case = " << c << endl;
q = (c == ’Q’);

} // end while
} // end of main()

cis1.5-fall2009-parsons-lectIV.3 15

Extracting numbers from strings

• Another thing we often want to do with strings is to extract
numbers from them.

• string s1 = "12";

is very different from

int i = 12;

• To turn a set of numeric characters in a string into a number, the
C standard library (cstdlib) provides the function atoi.

• Because it is a C-library function, it won’t work directly on
strings as we know them.

• Rather we have to use atoi like this:

i = atoi(s1.c_str());

cis1.5-fall2009-parsons-lectIV.3 16

• There is a similar function atof which will convert a string
representing a decimal number into a double.

• BTW, the member function

c_str()

generates what is known as a C-string, a string as it was
represented in C.

• This is not a class, and has no member functions, but there are
many functions that do for C-strings what the string member
functions do for strings.

• As ever, these functions are documented in:
http://www.cplusplus.com/reference/clibrary/

cis1.5-fall2009-parsons-lectIV.3 17

Summary

• This lecture looked in some more detail at strings.

• We looked at some additional member functions, especially
those that allow us to search in strings.

• We also looked at some functions from the C library that allow
us to process string content.

– Functions that tell us what kind of character we are dealing
with.

– Functions that convert numeric characters into numbers.

• We will talk more of strings in the next lecture.

cis1.5-fall2009-parsons-lectIV.3 18

