
SORTING ALGORITHMS

Today

• Last time we started looking at how to sort.

• Today we’ll look at sorting in more detail.

• We’ll think about the code that we’ll need to sort things.

• We will also think a bit about the computational complexity of the
sorting process.

cis1.5-fall2009-parsons-lectV.3 2

• In particular we thought about sorting numbers, but we can sort
any collection of things where we put the things in order.

• So, we can sort:

– Presidential candidates you could vote for.

– Games you might play when you are done with your CS
homework.

– Meals you might eat for dinner.

• Of course, to sort these you’d need more than just the > operator.

• Before we described some sorting methods rather abstractly.

• Now we’ll think about the code we need to do these things.

cis1.5-fall2009-parsons-lectV.3 3

• The four sorting methods we considered last time were:

– Blort sort;

– Selection sort;

– Insertion sort; and

– Bubble sort.

• We won’t look at blort sort (because it isn’t one you’ll ever need
to know, and it is also a bit too complicated for you to deal with
programming), but we’ll look at the code for all the others.

• The code is all in the program sort.cpp which you can
download from the course website.

cis1.5-fall2009-parsons-lectV.3 4



Bubble sort

• Bubble sort is perhaps the simplest way of sorting.

• We just go through the list, swapping adjacent items if they
aren’t in the right order.

• Doing this just once won’t always order the whole list.

• But if we do it once for each item in the list (ie 5 times for a 5
item list), then we will always sort the list.

• This gives the code on the next slide (assuming we have the
function swap which we discussed in an earlier lecture.

cis1.5-fall2009-parsons-lectV.3 5

for(i = 0; i < size; ++i) {

// For each position, compare that number with the one that
// follows.

for(j = 0; j < (size - 1); j++){

// If the following number is smaller, swap the two.

if(a[j] > a[j+1]){
swap(a[j], a[j+1]);

}
}

}

cis1.5-fall2009-parsons-lectV.3 6

Selection sort

• We can do selection sort a bit more simply than we did in the
lecture (the code from the lecture is in sort.cpp also).

• As before we look for the smallest value in the original array.

• But when we find it, we swap it with the value in the auxilliary.

• Swapping means that we no longer have to remember which
values we have already found.

• So long as we have initialised the auxilliary array to have large
values in it, the values we swap into the original array won’t be a
problem.

• When we are done, we have to copy all the values from the
auxilliary back into the original array.

cis1.5-fall2009-parsons-lectV.3 7

for(i = 0; i < size; ++i){

// Go through the array we have to sort, and find the
// smallest element.

for(j = 0; j < size; ++j){

// When we find it, swap its value with that in the
// auxillary array

if(a[j] <= aux[i]){
swap(aux[i], a[j]);

}
}

}

cis1.5-fall2009-parsons-lectV.3 8



• Comparing the two versions of selection sort, illustrates an
important idea.

• The one from the lecture is a pretty direct implementation — it
does exactly what we said selection sort does when we described
it last time.

• The one above is a bit different, but a lot simpler (less variables,
less lines of code).

• You often find this tradeoff.

cis1.5-fall2009-parsons-lectV.3 9

Insertion sort

• We already saw this in Lecture V.1

• For insertion sort we take each element from the list and put it
into the auxilliary.

• We put it in place in order.

• To find the right place we have to look through the auxilliary list.

• Once we have found the right place, we have to move all the
remaining items in the auxilliary list down to make room.

• Before we run the code on the next slide, we have to set up the
auxilliary array so that every item has a large value.

• After the code on the next slide has run, we have to copy the
values from the auxilliary array back into the original array.

cis1.5-fall2009-parsons-lectV.3 10

for(i = 0; i < size; ++i){

// Look through the auxilliary

for(j = 0; j < size; ++j){

// until the element of the array is smaller than an element of the auxilliary.

if(a[i] < aux[j]){

// then move all the remaining elements in the auxilliary down to make room

for(k = size-1; k >= j; --k){
aux[k] = aux[k-1];

}

// and copy the element of the original array across

aux[j] = a[i];

// At this point we don’t need to look through the auxilliary array any more.

j = size;
}

}
}

cis1.5-fall2009-parsons-lectV.3 11

Bonus — linear sort

• Here’s another kind of sorting, linear sort.

• This is like selection sort, but without the auxilliary array.

• To linear sort, we look in turn at each member of the array in
turn.

• For each of these we look at all the members later in the array.

• If the later member is smaller, we swap the two.

• This is now very close to what we do in bubble sort.

• The next slide has the code. Again this is in sort.cpp

cis1.5-fall2009-parsons-lectV.3 12



for(i = 0; i < size; ++i){

// For each position, look through every later position
// in the array.

for(j = i; j < size; j++){

// If one of the later numbers is smaller, then swap
// the two

if(a[j] < a[i]){
swap(a[j], a[i]);

}
}

}

cis1.5-fall2009-parsons-lectV.3 13

Computational complexity

• With many different ways to solve a problem like sorting a list,
we are interested in which way is “best”.

• “Best” can be measured in at least two ways:

– Which method uses least computer time.

– Which method uses least computer memory

• We will think about time (“time complexity”).

• Because we want to think about complexity without taking
variables like the speed of the computer into account, we think in
terms of the number of operations a computer has to carry out.

• We also think about how this time varies as the size of the
problem we are solving changes.

• Here, naturally, the size of the problem is the length of the list.

cis1.5-fall2009-parsons-lectV.3 14

• What is the complexity of bubble sort?

• Well, if we have an array with N elements, the outer for loop
will be executed N times.

• Each of those executions of the loop will execute the inner for
loop N − 1 times.

• In total, that is N(N − 1) or:

N2 + N

executions of the innermost if statement and is comparison of
values.

• The most significant part of this number is the N2, and we write
the number of comparisons as O(N2).

• This is known as “Big O” notation.

cis1.5-fall2009-parsons-lectV.3 15

• What about linear sorting?

• Here we have to do N comparisons followed by N − 1
comparisons, followed by N − 2 comparisons, followed by . . . all
the way down to N − N comparisons.

• In total, that is:
N(N + 1)

2
comparisons.

• Thus the complexity of the algorithm is also O(N2), and it turns
out that all the complexity of all of the approaches to sorting that
we have looked at here are O(N2).

cis1.5-fall2009-parsons-lectV.3 16



Summary

• We looked in more detail at the different types of sorting.

• We also gave the code for them.

• Finally, we considered their complexity.

cis1.5-fall2009-parsons-lectV.3 17


