
SEARCHING



Today

• Last time we considered algorithms for sorting a list of objects.

• This lecture will look at how one searches through a list to see if it
contains something we are looking for.

• We will consider a couple of approaches to searching an array,
and look at how efficient they are.

cis1.5-fall2009-parsons-lectV.4 2



Searching

• Sorting a list of things is one very common thing to want to do.

• Another common operation is searching to see if something is in
a list.

• The simplest way to do this is to look through the list, item by
item.

• We can search a list of numbers using:

for(counter = 0; counter < 6; counter++)
{

if(numbers[counter] == numberWeWant)
{
cout << ’’We found it’’ << endl;

}
}

• We’ll call this linear search.

cis1.5-fall2009-parsons-lectV.4 3



• This isn’t very efficient.

• In the worst case, it means we have to look through every
element of the list to find if the number is in there.

• That is fine if the list is 6 elements long, but not so fine if it is a
million elements long.

• Much more efficient is binary search, though binary search only
works if the list is sorted.

cis1.5-fall2009-parsons-lectV.4 4



Binary search

• Binary search works as follows, assuming the list is sorted
smallest first.

• Look at the middle element of the list.

• If it is the one we are looking for, we are done.

• If the middle element is larger than the one we are looking for,
then the one we are looking for must be in the first half of the list
(if it is in the list).

• If the middle element is smaller than the one we are looking for,
then the one we are looking for must be in the second half of the
list (if it is in the list).

• Repeat in the relevant half of the list

cis1.5-fall2009-parsons-lectV.4 5



• The code for doing this is:

int mid, start = 0;
int stop = size;

while(start <= stop){
mid = (start + stop)/2;

if(want == a[mid]){
return true;

}

if(want > a[mid]){
start = mid + 1;

}

if(want < a[mid]){
stop = mid - 1;

}
}

return false;
}

cis1.5-fall2009-parsons-lectV.4 6



Analysis of sorting algorithms

• If you try binary and linear search out on some examples, you
will see that binary search usually finds the result (that the thing
we want is in or out of the list) quicker than linear search.

• (If you run the example search.cpp from the course website
you can see exactly how much better binary search is as you
search for different numbers.)

• However, as for sorting, we can say more precisely what the
efficiency of the algorithms is.

cis1.5-fall2009-parsons-lectV.4 7



• We consider how many comparisons we will have to do for a list
that holds N elements,

• For linear search, the worst thing that can happen is that we
have to look at all N elements.

• So the worst case complexity is N.

• However, often we will look at less if the thing we are looking
for is earlier in the list).

• On average we will end up looking at N
2
elements and so we say

that the average case complexity is N
2
.

• In binary search we will have to look at log
2
(n + 1) elements in

the worst case.

cis1.5-fall2009-parsons-lectV.4 8



• We can look at the worst case number of comparisons for
different values of N.

N Linear Binary
100 100 7
1,000 1,000 10
1,000,000 1,000,000 20

• So we can see that binary search is a lot more efficient than linear
search as the size of the list increases.

• However, to use binary search, we need a sorted list.

cis1.5-fall2009-parsons-lectV.4 9



• Remembering Big-O notation and the results from the last class,
we can say the following.

• Linear searching is O(N), and so will be more efficient than linear
sorting since N is always smaller than N2.

• Binary searching is O(log N), and so is more efficient than either
linear searching or linear sorting since log N is smaller than N
and N2.

• However, if we sort with linear sort and and then search using
binary search, overall that will be less efficient than using linear
search.

• Note that there are other algorithms that sort more efficiently
than any of the sorting algorithms we have looked at.

cis1.5-fall2009-parsons-lectV.4 10



Genetic algorithms

• The program ga.cpp which you can download from the course
website is an example of the use of bubblesort.

• It is also an example of biologically inspired computing, where
ideas from biology are used to make computer programs more
efficient.

• In genetic algorithms we breed solutions to a computing problem,
and allow them to evolve until we have the best solution.

• Genetic algorithms can be a very efficient way to find solutions
to some problems.

cis1.5-fall2009-parsons-lectV.4 11



Summary

• We looked at two forms of searching an array:

– Linear search

– Binary search

• We considered the complexity of both forms of search.

• We also talked a bit about genetic algorithms.

cis1.5-fall2009-parsons-lectV.4 12


