
SIMPLE CLASSES

Today

• This lecture looks at simple classes.

• Classes are the foundation of object-oriented programming

• FINAL EXAM: Wednesday 16th December from 10.30am until
12.30.

– The room will be announced later.

• Review sessions.

• Sample code can be found on the class website in the files
class.cpp and simple-class.cpp.

cis1.5-fall2009-parsons-lectV1.1 2

Simple classes

• Classes are ways of organizing programs to provide structure

• A class is a special kind of compound data type

• Classes are compound because they have members

• There are two types of members in classes:

– data members

– function members

• The dot operator (.) is used to indicate the member of a class

cis1.5-fall2009-parsons-lectV1.1 3

• You have already used three classes this semester:

– string

– ifstream

– ofstream

• Can you think of some of the member functions that belong to
these classes?

cis1.5-fall2009-parsons-lectV1.1 4

• Here are some of the member functions that belong to these
classes:

– string

length(), clear(), erase(), replace(), insert(),
find(), substr()

– ifstream:

open(), close(), eof()

– ofstream

open(), close()

cis1.5-fall2009-parsons-lectV1.1 5

• We have also mentioned a few data members, though all of these
are actually constants and so are treated somewhat different
from data variables (which we’ll talk about later):

– string::npos

– ios::in, ios::out— these belong to the ios class
(ifstream and ofstream are created based on the ios
class)

cis1.5-fall2009-parsons-lectV1.1 6

• We use these classes by declaring variables whose data type is
one of these classes, e.g.:

string x;

• We call x an object of type string

• Then we can use the stringmember functions to operate on
the object x, e.g.:

string x;
x.clear();
x.insert(0, "hello");

Notice the x. (“x dot”) notation

cis1.5-fall2009-parsons-lectV1.1 7

Simple class example

• The most important thing about classes for now is their ability to
group bits of information together.

• Here is an example:

class simple{
public:

int x;
double d;

};

• This defines a class simple with one integer member x and one
double member d.

cis1.5-fall2009-parsons-lectV1.1 8

• Things to notice:

– Two new C++ keywords: class and public

– There is a semi-colon at the END OF THE CLASS
DEFINITION, after the last curly brace (})

cis1.5-fall2009-parsons-lectV1.1 9

• We use the dot notation to access the members:

simple s1, s3;

s1.x = 3;
s1.d = 2.7;

• s1 and s3 are objects, instances of the new kind of data we
defined.

cis1.5-fall2009-parsons-lectV1.1 10

• Like any kind of variable, we can pass instances of classes to
functions.

void printSimple(simple s2){
cout << "The int is: " << s2.x << endl;
cout << "The double is: " << s2.d << endl;

}

• We can also return an object from a function:

simple doubleSimple(simple s1){
s1.x *= 2;
s1.d *= 2;

return s1;
}

cis1.5-fall2009-parsons-lectV1.1 11

• Here’s another example of a class.

class pose{
public:

double px;
double py;
double pa;

};

• This comes from a robot simulator, and holds the three values
that identify the location of the robot.

• More examples can be found in simple-class.cpp on the
class website.

cis1.5-fall2009-parsons-lectV1.1 12

Another class example

• Suppose we wanted to create a program that contains the
address book from your cell phone.

• Look at your cell phone address book:

– What kind of information is listed for each entry?

– For example:

∗ name (first name and last name)

∗ cell phone number

∗ email address

∗ home phone number

∗ work phone number

• These are called fields.

cis1.5-fall2009-parsons-lectV1.1 13

• Here is a definition of a class that can hold such an entry:

class person {
public:

string last_name;
string first_name;
string cell_number;
string email;
string home_number;
string work_number;
int birth_day;
int birth_month;
int birth_year;

};

cis1.5-fall2009-parsons-lectV1.1 14

Arrays of objects

• You can declare an array of a class.

• Each element in the array is then an object of that class.

• An array of person objects is just:

person p[3];

• Each element of the array is then a person object, and we can
do everything to it that we can do to a person:

p[0].first_name = "Simon";

p[2].birth_month = 3;

cis1.5-fall2009-parsons-lectV1.1 15

Nested classes

• Finally, you can nest classes.

• This means you declare a data member in one class whose data
type is that of another class.

• As an example, we have:

class lessSimple{
public:

int v;
pose p;
simple s;

};

which uses both the simple and pose classes.

cis1.5-fall2009-parsons-lectV1.1 16

• We use an extension of the dot notation to access the members of
the members.

• For example

lessSimple l1;

l1.p.pa = 2.7;

l1.s.x = 15;
l1.s.d = 27.3;

printSimple(doubleSimple(l1.s));

cis1.5-fall2009-parsons-lectV1.1 17

• We can also use this idea in our address book example.

• We can create a class to hold name information

class name {
public:

string last;
string first;

};

cis1.5-fall2009-parsons-lectV1.1 18

• We can then use this class in the address book.

• The modified person class is

class person {
public:

name my_name;
string cell_number;
string email;
string home_number;
string work_number;
int birth_day;
int birth_month;
int birth_year;

};

cis1.5-fall2009-parsons-lectV1.1 19

Summary

• This lecture introduced the ideas of simple classes.

• We discussed:

– How to define classes.

– How to use classes.

– Arrays of classes.

– Nested arrays.

• There is a lot more to classes — some of this is convered in CIS
15.

cis1.5-fall2009-parsons-lectV1.1 20

