
MORE CONTROL STRUCTURES AND SOME
MATHEMATICS

Today

• The for statement

• Recap arithmetic
• Arithmetic with mixed variable types

• Math library functions

This is a bit of a miscellaneous collection of the things we didn’t
yet cover from Chapters 1 & 2.

cis1.5-spring2007-parsons-lectII.2 2

The for loop statement

• We use the for structure in the ant-game program:

for(turns = 8; turns >= 0 ; turns--)
{

:
<move the ant>

:
}

• We use it to give us just 8 turns to get the ant to its home.

cis1.5-spring2007-parsons-lectII.2 3

The for loop statement

• General structure:

for(<start>; <true or false> ; <change>)
{

<some instructions>

}

• This works as follows

cis1.5-spring2007-parsons-lectII.2 4

The for loop statement
• At the start of the loop, the instruction in <start> is carried out.
• We usually use this to set the value of a counter.
• Then <true or false> is tested to see if it is true or false.
• This is usually a test on the counter.
• If it is false, the program will skip to the } that marks the end of

the control structure.
• If it is true the <some instructions> are executed.
• Once they are done, the instruction in <change> is executed.
• This is usually something that changes the value of the counter.
• Then <true or false> is tested again.
• Thus <some instructions> will be repeatedly executed until
<true or false> becomes false.

cis1.5-spring2007-parsons-lectII.2 5

Examples

• In the antworld, we might have:

int myCount;

for(myCount = 1 ; myCount <= 5 ; myCount++)
{

goNorth();
goEast();

}

• This would make the ant go 5 steps north and five steps east.

cis1.5-spring2007-parsons-lectII.2 6

• While:

int myCount;

for(myCount = 10 ; myCount > 5 ; myCount--)
{

goNorth();
goEast();

}

would do the same, but with different values of myCount.

cis1.5-spring2007-parsons-lectII.2 7

• What would

int myCount;

for(myCount = 2 ; myCount < 8 ; myCount+=2)
{

goSount();
goWest();

}

do?

cis1.5-spring2007-parsons-lectII.2 8

Arithmetic

• The mathematical operators in C++ are:

+ unary plus
− unary minus
+ addition
− subtraction
∗ multiplication
/ division
% modulo

• We also have ++, --, +=, -=, *= and /=.

cis1.5-spring2007-parsons-lectII.2 9

• Given:

int x;
int y;
int z;

we can write, for example:

z = -x;
z = +y;
z = x + y;
z = x - y;
z = x * y;
z = x / y;
z = x % y;

cis1.5-spring2007-parsons-lectII.2 10

• Because x and y are integers, when we do division it is integter
(elementary school) division.

• So:

x = 13;
y = 3;
z = x/y;

makes z equal to 4.

• Similarly:

x = 13;
y = 3;
z = x % y;

makes z equal to 1.

cis1.5-spring2007-parsons-lectII.2 11

• We can write complex arithmetic expressions, like:

int x, y, z;
int u, v, w;

x = y + z * u - v / w;

• What sum does this do?

• My advice: use parentheses, so if you want:

x = (((y + z) * u) - v) / w;

then write that.

• If you don’t do what I advise, then C++ uses some (kind of
complex) rules to figure out what to do.

cis1.5-spring2007-parsons-lectII.2 12

• It uses precedence rules to decide which things to do first.
• For example, it does * and / before + and -

• There are also associativity rules, which say how to order things
when the precedence rules don’t help.

• For example is:
x / y * z

the same as
(x / y) * z

or
(x / (y * z)?

• Precedence and associativity rules are in the textbook, page 65.

cis1.5-spring2007-parsons-lectII.2 13

Arithmetic with mixed variables

• In the arithmetic we have seen before, everything is an integer.

• That’s why division was odd (and we needed %) — there was no
way to represent fractions.

• If we want to be able to handle fractions, we use double-valued
variables

double x = 13;
double y = 4;
double z

z = x/y;

makes z equal to 3.25

cis1.5-spring2007-parsons-lectII.2 14

• If all the variables are double then things work as you’d expect.
• You can combine fractions and get fractions as answers.

• Things can be odd if you mix doubles and ints.

double x = 13;
double y = 4;
int z

z = x/y;

makes z equal to 3

• This happens because you can’t store the fractional bit in z, so it
just gets truncated.

cis1.5-spring2007-parsons-lectII.2 15

• Perhaps stranger is:

int x = 13;
int y = 4;
double z

z = x/y;

makes z equal to 3
• This happens because x/y has been evaluated to 4 (as a result of

integer division) before it is assigned to z.

cis1.5-spring2007-parsons-lectII.2 16

• However:

double x = 13;
int y = 4;
double z

z = x/y;

makes z equal to 3.25
• This happens because having one of the variables in the division

be a double forces the whole division to be done as if all the
values were doubles.

cis1.5-spring2007-parsons-lectII.2 17

Math library

• In the ant-game, let’s imagine we want to see how far the ant is
from home.

• We have x and y which give us the ant’s position.
• We have homeX and homeY which give us the position of the

home.
• The distance between them is:

distance =
√

(x − homeX)2 + (y − homeY)2

• How can we compute this?

cis1.5-spring2007-parsons-lectII.2 18

• The squares are easy enough to compute.

(x - homeX) * (x - homeX)

and

(y - homeY) * (y - homeY)

• For the square root we can use the math library function sqrt.

distance = sqrt(((x - homeX) * (x - homeX))
+ ((y - homeY) * (y - homeY)));

• To use the math library, we need to add in

#include<cmath>

at the start of the program.

• See the ant game for an example of this.

cis1.5-spring2007-parsons-lectII.2 19

• The math library contains a bunch of other functions:

• double pow(double x, double y)

• double sin(double x)

• double cos(double x)

• double tan(double x)

• double asin(double x)

• double acos(double x)

• double atan(double x)

cis1.5-spring2007-parsons-lectII.2 20

Summary

• This lecture covered a number of slightly unrelated things.

• We looked at for loops.

• Then we looked at different aspects of arithmetic, especially
what happens when you have complex expressions, and when
you mix ints and doubles.

• Finally, we looked at using the math library.

cis1.5-spring2007-parsons-lectII.2 21

