
A FIRST LOOK AT ARRAYS

Today

• How we can use arrays to hold sets of related data.

• Common patterns of handing data:

– Finding the largest element
– Summing up elements
– Counting elements with some feature.

• You should read these notes in conjunction with the program in
arrays.cpp

cis1.5-spring2007-parsons-lectII.5 2

What is an array?

• You can think of an array as a set of variables which are grouped
together, all using the same identifier.

• Just as
int a;

declares an integer variable with the name a, then
int b[5];

declares an array of 5 integers, with the name b.
• The square brackets [] are the crucial bit of syntax, telling the

compiler it is dealing with an array.

cis1.5-spring2007-parsons-lectII.5 3

• Whereas
int a;

reserves space for one integer in memory and associates the
name a with it:

a

cis1.5-spring2007-parsons-lectII.5 4

the declaration
int b[5];

reserves space for five integers in memory right next to one
another.

b

cis1.5-spring2007-parsons-lectII.5 5

• Elements of the array b are just integers, and we can do exactly
the same things to them that we can do to integers.

• The only difference is how we address them.
• While we can assign a value to a by:
a = 5;

To do the same to one of the elements of b, we have to specify
which element it is. For example:
b[1] = 5;

• Thus all of the following are legal operations:

b[1] += 2;
b[2] = 7 % 3;
b[3] = b[2] - 5;
b[4] = b[1]/b[3];

cis1.5-spring2007-parsons-lectII.5 6

• One thing to be careful of is the limits on the index, that is the
number inside the square brackets [].

• The first element of an array always has index 0.

• So the first element of b is:
b[0]

and, since b has 5 elements, the last element of b is:
b[4].

• Every C++ programmer forgets this from time to time.

cis1.5-spring2007-parsons-lectII.5 7

• Arrays are useful when you want to store lost of data in memory.
• If I want to use 3 integers in my progran, I’ll just declare 3

different variables.
• If I want to use 30,000 integers in my program, it is a lot easier to

use an array.

• Arrays also go very nicely with for loops.
• For example, here is code from arrays.cpp which reads

information from a file, and puts part of it into two different
arrays.

• The arrays are diseases[] and ages[]

cis1.5-spring2007-parsons-lectII.5 8

for(counter = 0; counter < 7 ; counter++)
{

infile >> idNumber; // Read data in from
infile >> age; // file.
infile >> disease;
infile >> zipCode;

// Store disease and age data in arrays

diseases[counter] = disease;
ages[counter] = age;

printRecord(); // Print data
}

cis1.5-spring2007-parsons-lectII.5 9

• Once the information is in the array, we can do all kinds of stuff
with it.

• We can, for example, print out the values in reverse order:

cout << endl << "Diseases in reverse order" << endl;

for(counter = 6; counter >= 0; counter--)
{

cout << diseases[counter] << endl;
}

cis1.5-spring2007-parsons-lectII.5 10

• Another thing we can do is to count up how many times we find
some value in the array.

• The value we are looking for is in the variable disease
for(counter = 0; counter < 7; counter++)

{
if(diseases[counter] == disease)
{
numberOfDiseases += 1;

}
}

• This is one common pattern of using a loop to summarize some
information.

cis1.5-spring2007-parsons-lectII.5 11

• A slightly different summarization would be look look for oldest
patient. (The patient with the largest age.)

• We collect the largest age in the variable oldest:
int oldest = 0;

for(counter = 0; counter < 7; counter++)
{
if(ages[counter] > oldest)
{
oldest = ages[counter];

}
}

• We could also store the value of counter that corresponds to
the highest age, and then we could look at other aspects of the
oldest patient.

cis1.5-spring2007-parsons-lectII.5 12

• A third, and final summarization is to add up, and then compute
the average of, the patient ages:
int sumOfAges = 0;

for(counter = 0; counter < 7; counter++)
{
sumOfAges += ages[counter];

}

cout << endl << "Average age is ";
cout << endl << sumOfAges / 7.0 << endl;

• We divide by 7.0 in order to force the result to be a decimal
fraction.

• If we didn;t do this, we would be dividing one integer by
another, and we’d get an integer result.

cis1.5-spring2007-parsons-lectII.5 13

Variable precision

• This last example has us printing out a decimal fraction.
• In order to print out decimal fractions neatly, we can specifcy

how many decimal places we want to print out.
• In this example:
cout.setf(ios::fixed, ios::floatfield);
cout.precision(2);

cout << endl << "Average age is ";
cout << endl << sumOfAges / 7.0 << endl;

• The first two lines tell cout to print floating point numbers (in
other words decimal fractions) with fixed width, and to use two
decimal places.

cis1.5-spring2007-parsons-lectII.5 14

Constants

• One thing to notice with all of these arrays is that we have been
writing 7, the size of the array, a lot.

• What would happen if we decided we now needed the array to
hold 10 elements?

• Well, we’d have to make lots of changes.

• Each change gives us the chance to make a mistake.
• There is a way to reduce the number of changes, and that is to

use a constant.

cis1.5-spring2007-parsons-lectII.5 15

• We define a constant using the keyword const:
const int LENGTH = 7;

• By convention we give a constant a name that is all capitals.
• We can then use LENGTH wherever we need the number 7:

int diseases[LENGTH];

for(counter = 0; counter < LENGTH; counter++)
{

sumOfAges += ages[counter];
}

and so on.

cis1.5-spring2007-parsons-lectII.5 16

Summary

• In this lecture we talked about four things.
• First we briefly introduced arrays.

• (We will talk about arrays a lot more in the future).
• Second we talked about some common patterns of

programming.
• Third we talked about formatting output, in particular

controlling the precision of numbers.
• Finally we talked about constants.

cis1.5-spring2007-parsons-lectII.5 17

