
Today

• More on functions (textbook chapter 5, sections 5-6)

• Things to notice from the example programs I gave you.

• The conditional operator

cis1.5-spring2007-parsons-lectIII.4 1

More on functions: reference parameters

• Last class we talked about how functions can pass parameters

– How the value of those parameters might change inside the
function

– But in the calling function, the value of the parameters does
not change

• We also talked about scope

– How variables are defined within either a global or a local
scope

– How local variables, e.g., those that are defined within a
function, “go away” when the function exits

cis1.5-spring2007-parsons-lectIII.4 2

• In C++, there is a feature of functions called reference
parameters.

• This lets you pass what is called the “address” of a variable to a
function.

• This means that it is the variable itself rather than a copy that
gets passed to the function.

• As a result, when the function exits, if the value of the variable
has changed inside the function, then the new value can be
retained outside the function.

cis1.5-spring2007-parsons-lectIII.4 3

Reference parameters: classic example

• The classic example of using reference parameters is a function
called swap()

void swap(int &a, int &b)
{

int tmp;
tmp = a;
a = b;
b = tmp;
return;

}

cis1.5-spring2007-parsons-lectIII.4 4

Random number generation

• The fox and rabbit example uses random numbers.

• rand()

generates a random number in the range 0 to RANDMAX.

• rand() % m

generates a random number between 0 and m - 1.

• n + rand() % m

generates a random number between n and n + m - 1.

• What does

1 + rand() % 6

do?

cis1.5-spring2007-parsons-lectIII.4 5

• The random numbers generated by rand depends on the seed.

• The seed is set by

srand

• A typical way to do this is:

srand(time(NULL))

• This will generate a new seed every time the program is run
(more or less).

cis1.5-spring2007-parsons-lectIII.4 6

Other things to notice
• The fox and rabbit example shows you that:

– You can have a function with many parameters that don’t
return a value
displayPosition

– You can have a function with no parameters that returns a
value
makeRandomMove

– You can have a function with parameters that return values
wrapAround

– You can have a function with many returns
wrapAround

– And we already knew that we could have functions that take
no parameters and return no values.

cis1.5-spring2007-parsons-lectIII.4 7

The conditional operator

• C++ contains a compact version of if else, which can
sometimes be useful.

• <condition> ? <if true> : <if false>

• If the condition is true, the bit between the ? and the : gets
executed.

• If the condition is false, the bit between the : and the ; gets
executed.

cis1.5-spring2007-parsons-lectIII.4 8

• Thus

if (a >= b)
{

y = a;
}
else
{

y = b;
}

can be written as:

y = a <= b ? a : b;

cis1.5-spring2007-parsons-lectIII.4 9

Summary

• The main point of this lecture was to introduce reference
parameters.

• The rest of the lecture pointed out some things we had already
covered, but maybe hadn’t spent as much time on as we should.

• Oh, and we finished covering all the material up to the end of
Chapter 5.

cis1.5-spring2007-parsons-lectIII.4 10

