
ARRAYS



Today

• We have already touched on arrays, back in lecture II.5.

• Today we will begin to look at arrays in more detail.

• These notes will make most sense if you go back and read the
notes for lecture II.5 first.

• Many of the examples in the notes are contained in the program
more-arrays.cpp which can be downloaded from the class
web page.

cis1.5-spring2007-parsons-lectIV.2 2



Declaring and initialising

• We already talked about how to declare an array.

• For example:

int age[8];

declares an array of 10 ints called age..

• We can have arrays of any data type. For example:

double numbers[5];
char sentence[30];

declares an array of 5 doubles called number, and an array of
30 chars called sentence.

cis1.5-spring2007-parsons-lectIV.2 3



• We can initialise these arrays when we declare them, just as we
can for other kinds of variable:

int age[10] = {5, 10, 15, 20, 25, 30, 35, 40}

• Initialising like means that:

cout << a[0] << endl;
cout << a[6] << endl;

will produce:

5
35

since, as we mentioned before, the first element in the array has
subscript 0.

cis1.5-spring2007-parsons-lectIV.2 4



• If instead we initialised with:

int age[10] = {5, 10, 15, 20, 25, 30}

then

cout << a[0] << endl;
cout << a[6] << endl;

would produce:

5
0

since any values we do not explicitly assign in the initialisation
will be set to 0.

cis1.5-spring2007-parsons-lectIV.2 5



• Declaring:

double number[5] = {5.0, 10.1, 20.2, 30.3};

would set number[4] to 0.

• Declaring:

char sentence[30] = {’H’, ’e’, ’l’, ’l’, ’o’}

would set all elements of sentence after the ’o’ to ’ ’.

cis1.5-spring2007-parsons-lectIV.2 6



Handling arrays

• Arrays are commonly handled using for loops.

• Thus, to print out the array age, we might use:

for(counter = 0; counter < 8; counter++)
{
cout << age[counter] << " ";

}

• This will take each element of age in turn and send it to cout.

• Note that the maximum value of the subscript counter is 7.

• This is because although age is 8 elements long, the subscript f
the first element is 0.

• In computer science we start counting at 0.

cis1.5-spring2007-parsons-lectIV.2 7



• In C++ it is very important to be careful with the maximum value
of the subscript of an array.

• If you overflow an array, for example by doing:

age[10] = 30;

this will not generate an error.

• However, it may cause your program to crash in an unexpected
way.

cis1.5-spring2007-parsons-lectIV.2 8



• Often, when handling arrays, we want to use the same subscript
to access two or more arrays.

• For example:

for(counter = 0; counter < 5; counter++)
{
number[counter] = 2 * age[counter];

}

• This replaces each element of number with double the
corresponding element of age

cis1.5-spring2007-parsons-lectIV.2 9



Casting
• Note that it is safe to assign the elements of age to number

because number contains doubles, and we can use a double
to hold an integer.

• However, if we do:

for(counter = 0; counter < 5; counter++)
{
age[counter] = number[counter];

}

We will get unpredicatble results because there is not enough
room in a int to hold all the information in a double.

• What we can do is to deliberately exclude the decimal part of
number.

• We do this using an operation called casting.

cis1.5-spring2007-parsons-lectIV.2 10



• In this code:

for(counter = 0; counter < 5; counter++)
{
age[counter] = (int)number[counter];

}

We cast a double into an int, losing information (the decimal
part).

• We can also cast to gain information.

cis1.5-spring2007-parsons-lectIV.2 11



• For example:

int sum = 203;
int count = 20;
double average;

average = sum/count;
cout << average;

will output 10, since the division is integer division, and so will
generate an integer answer.

• Altering the division to

average = ((double)sum)/count;

will temporarily make sum a double, and so the division will be a
double divided by an integer, which will give a decimal answer
that can be assigned to average.

cis1.5-spring2007-parsons-lectIV.2 12



Modifying elements in an array

• Of course, since each element of age is an integer, we can do to
each element, exactly what we can do to an integer.

• All we have to do is remember how to address each element of
the array, using a subscript.

• For example:

for(counter = 0; counter < 8; counter++)
{
age[counter]++;
age[counter] = (age[counter] * 2)/3;

}

• What does this do to each element of the array age?

cis1.5-spring2007-parsons-lectIV.2 13



Functions and array elements

• Since elements of age are integers, we can call functions on
them

• If we have the function

int timesTwo(int number)
{

return 2 * number;
}

we can call this on the third member of age like so:

timesTwo(age[2]);

cis1.5-spring2007-parsons-lectIV.2 14



Manipulating subscripts

• The subscript that we use to identify elements of an array is also
just an integer.

• So we can use arithmetic expressions as subscripts, so long as
they eveluate to integers.

• For example

cout << age[2+1];
cout << age[counter - 2];
cout << age[age[0]];

cis1.5-spring2007-parsons-lectIV.2 15



Using arrays

• We have already seen an example, back when we were talking
about handling patient records, of a use for arrays in a medical
context.

• Another use, which we will explore in the homework, is
manipulating information about DNA.

• Lots of recent biomedical research has concentrated on
analysing genetic information — information encoded in DNA.

• You can think of DNA as being long sequences of letters drawn
from an alphabet of four letters, C, A, T and G.

• Clearly we can represent such sequences as arrays of
characters:

char dna[7] = {’a’, ’t’, ’a’, ’t’, ’a’, ’g’, ’c’}

cis1.5-spring2007-parsons-lectIV.2 16



• What we typically want to do with DNA sequences is to search
for patterns in them, and C++ gives us the tools to do this.

• For example:

for{counter = 0; counter < 4; counter++)
{

if(dna[counter] == ’t’ &&
dna[counter + 1] == ’a’ &&
dna[counter + 2] == ’g’)
{

cout << ‘‘We found tag’’;
}

}

will search dna for the sequence tag.

cis1.5-spring2007-parsons-lectIV.2 17



• To do more complex searches, we need better ways of handling
sequences of characters, and we will start to look at those in the
next lecture..

cis1.5-spring2007-parsons-lectIV.2 18



Summary

• This lecture has looked in more detail at arrays.

• We examined the initialization of arrays.

• We looked at handling arrays using for loops, and by playing
with subsscript values.

• We looked at different things one can do with array elements.

• Along the way we also looked at casting.

• We finished by sketching one use for arrays in a medical context.

cis1.5-spring2007-parsons-lectIV.2 19


