
SORTING

Today

• This lecture looks at a simple form of sorting.

• We illustrate this by sorting some numbers that have been read
into an array.

• Before doing this, however, we will recap some old material by
considering how to read data from a file.

cis1.5-spring2007-parsons-lectV.2 2

Reading information from a file (again)

• Consider the following problem statement:

Read six numbers from a file into an array.

• With what we have covered so far, we would probably write
something like the code in files.cpp (which you can download
from the class web page).

• First we set up a file as the input stream:

ifstream myfile;
myfile.open("numbers-short.txt");

cis1.5-spring2007-parsons-lectV.2 3

• Then we use a for loop to read in the six numbers:

for(counter = 0; counter < 6; counter++)
{
myfile >> numbers[counter];

}

• This is fine so long as we know that there are at least six
numbers in the file.

• Sometimes we are not so lucky.

• We want to read in up to six numbers, but there may not be as
many as that.

cis1.5-spring2007-parsons-lectV.2 4



• In such a case (which is not uncommon) we might want to do the
following:

do
{
myfile >> numbers[counter];
counter++;

}
while(counter < 6 && myfile);

• The second myfile is true so long as the last read from the file
returned something.

• Thus when we get to the end of the file, myfile is false, and the
loop ends.

cis1.5-spring2007-parsons-lectV.2 5

• Another way to achieve the same thing is to do:

while(counter < 6 && !myfile.eof())
{
myfile >> numbers[counter];
counter++;

}

• The function myfile.eof() returns true if we are at the end of
the file.

• Thus, once again, when we get to the end of the file, the loop
terminates.

cis1.5-spring2007-parsons-lectV.2 6

• You can test the way these work by running files.cpp,
files2.cpp and files3.cpp from the course webpage.

• To test these, use the files of nubers numbers.txt, which holds
more than 6 numbers, and numbers-short.txt, which holds
less.

• Another useful function for handling files is myfile.isopen(),
which will return false if a previous call to myfile.open()
failed.

• Such a failure would occur, if you were opening a file for reading,
if the file didn’t exist (which is a problem that we have seen
several times in the lab exercises).

cis1.5-spring2007-parsons-lectV.2 7

Sorting

• Now we can read numbers into an array. Let’s look at sorting
them.

• We will start by looking at the linear sort, and consider sorting
into increasing order (that is “smallest first”).

• To linear sort, we look in turn at each member of the araay in
turn.

• For each of these we look at all the memmers later in the array.

• If the later member is smaller, we swap the two.

• This algorithm translates quite simply into C++ using two nested
for loops.

cis1.5-spring2007-parsons-lectV.2 8



// Step through every position in the array in turn.
for(counter = 0; counter < 6; counter++)
{
// For each position, look through every later
// position in the array.
for(counter2 = counter; counter2 < 6; counter2++)
{

// If one of the later numbers is smaller, then swap
if(numbers[counter2] < numbers[counter])
{
swap = numbers[counter];
numbers[counter] = numbers[counter2];
numbers[counter2] = swap;

}
}

}

cis1.5-spring2007-parsons-lectV.2 9

Summary

• This lecture discussed two things.

• First it considered different ways of reading information in from a
file.

– We looked at a couple of ways of detecting the end of a file.

• Then we considered how to sort things.

– In particular, we looked at the linear sort algorithm.

cis1.5-spring2007-parsons-lectV.2 10


