
SIMPLE CLASSES

Today

• This lecture looks at simple classes.

• Classes are the foundation of object-oriented programming

• FINAL EXAM: will be on MONDAY MAY 21, 1.00pm–3.00pm
(room to be announced...)

cis1.5-spring2007-parsons-lectV1.1 2

Simple classes

• Classes are ways of organizing programs to provide structure

• A class is a special kind of compound data type

• Classes are compound because they have members

• There are two types of members in classes:

– data members

– function members

• The dot operator (.) is used to indicate the member of a class

cis1.5-spring2007-parsons-lectV1.1 3

• You have already used three classes this semester:

– string
– ifstream
– ofstream

• Can you think of some of the member functions that belong to
these classes?

cis1.5-spring2007-parsons-lectV1.1 4

• Here are some of the member functions that belong to these
classes:

– string
∗ length(), clear(), erase(), replace(), insert(),
find(), substr()

– ifstream:

∗ open(), close(), eof()

– ofstream
∗ open(), close()

cis1.5-spring2007-parsons-lectV1.1 5

• We have also mentioned a few data members, though all of
these are actually constants and so are treated somewhat
different from data variables (which we’ll talk about later):

– string::npos
– ios::in, ios::out — these belong to the ios class

(ifstream and ofstream are created based on the ios
class)

cis1.5-spring2007-parsons-lectV1.1 6

• We use these classes by declaring variables whose data type is
one of these classes, e.g.:

string x;

• We call x an object of type string

• Then we can use the string member functions to operate on
the object x, e.g.:

string x;
x.clear();
x.insert(0, "hello");

Notice the x. (“x dot”) notation

cis1.5-spring2007-parsons-lectV1.1 7

Simple class example

• Suppose we wanted to create a program that contains the
address book from your cell phone.

• Look at your cell phone address book:

– What kind of information is listed for each entry?

– For example:

∗ name (first name and last name)
∗ cell phone number
∗ email address
∗ home phone number
∗ work phone number

• These are called fields

cis1.5-spring2007-parsons-lectV1.1 8

• If we wanted to write a program that stored all this information for
everyone in our cell phone address book, we could do something
like class1.cpp.

cis1.5-spring2007-parsons-lectV1.1 9

• The idea is that it is annoying to have to keep track of so many
parallel arrays

• So this is where we introduce a class

• A class will help us link together all the fields for each entry in the
cell phone book

cis1.5-spring2007-parsons-lectV1.1 10

• Here is a definition of a class that can hold such an entry:

class person {
public:

string last_name;
string first_name;
string cell_number;
string email;
string home_number;
string work_number;
int birth_day;
int birth_month;
int birth_year;

};

cis1.5-spring2007-parsons-lectV1.1 11

• Things to notice:

– Two new C++ keywords: class and public

– There is a semi-colon at the END OF THE CLASS
DEFINITION, after the last curly brace (})

• Now class2.cpp is our example re-written using this simple
class (but for only one person—next, we’ll show how to do it with
more than one person).

cis1.5-spring2007-parsons-lectV1.1 12

Arrays of objects

• You can declare an array of a class.

• Each element in the array is then an object of that class.

• Our example, with an array of person objects is in
class3.cpp.

• The array definition is just:

person p[3];

cis1.5-spring2007-parsons-lectV1.1 13

Nested classes

• Finally, you can nest classes.

• This means you declare a data member in one class whose data
type is that of another class.

• A modified version of the one-person address book, using two
classes is given in class4.cpp.

• The class that gest nested is

class name {
public:

string last;
string first;

};

cis1.5-spring2007-parsons-lectV1.1 14

• The modified person class is then

class person {
public:

name my_name;
string cell_number;
string email;
string home_number;
string work_number;
int birth_day;
int birth_month;
int birth_year;

};

cis1.5-spring2007-parsons-lectV1.1 15

Summary

• This lecture introduced the ideas of simple classes.

• We discussed:

– How to define classes.

– How to use classes.

– Arrays of classes.

– Nested arrays.

• There is a lot more to classes — some of this is convered in CIS
15.

cis1.5-spring2007-parsons-lectV1.1 16

