COMMAND LINE ARGUMENTS

® We will recap some C++ basics
- Type casting
— Enumeration types
-t ypedef
— Precedence and associativity
— Control flow

e We'll also introduce what is probably a new topic for most of
you:

— Command line arguments

cis15-spring2009-parsons-lect].2

Type casting

® Used to convert between fundamental (simple) data types (e.g.,
i nt,doubl e, char)

® There are two ways to do this

® The C way (technically obsolete):

double d = 65.0;
int i = (double)d,
char ¢ = (char)i;

cis15-spring2009-parsons-lectl.2

¢ The C++ way:

—static_cast: for conversions that are “well-defined,
portable, intertable”; e.g., like the C ways, above.

—reinterpret_cast: for conversions that are
system-dependent (not recommended).

—const _cast : to create a modifiable copy of a const
variable; data type into which the value is cast must always
be a pointer or reference (see on).

—dynani c_cast : for converting between classes (to be
discussed later in the term)

cis15-spring2009-parsons-lectl.2

® Syntax:
st ati c_cast <type>(variable)

e In practice this looks something like:

double d = 65.5;

i nt i

i = static_cast<int>(d);
converts a double to an integer.

® Const casting:

const int ¢ = 5;
ny_func(const_cast<i nt&>(c));

passes a modifiable copy of ¢ to the function.

® See cast . cpp

cis15-spring2009-parsons-lect].2 5

Enumeration types|

e Used to declare names for a set of related items

¢ For example:
enum suit { dianonds, clubs, hearts, spades };

¢ Internally, each name is assigned an i nt value.
¢ The value assigned to the first name is zero.

e The value of each member of the list is then one more than its
lefthand neighbor.

¢ So in the above example, di anonds is actually 0, cl ubs is 1,
and so on.

cis15-spring2009-parsons-lect].2 6

® You create an enumdata type if you want to use the names
instead of the values, so you shouldn’t really care what the
values are internally.

e If you need to set the value explicitly, you can:

enum answer { yes, no, maybe = -1);

e If you do this you have to be careful about duplicated values (see
enum cpp).

® syntax:

enumtag{ wvalue0, valuel, ... valueN } ;
® The tag is optional.

® You can also declare variables of the enumerated type by adding
the variable name after the closing }

® See enum cpp

cis15-spring2009-parsons-lectl.2 7

void showSuit(int card) {

enum suits { dianonds, clubs, hearts, spades } sui

suit = static_cast<suits>(card / 13);

switch(suit) {
case di anobnds: cout << "di anonds"; break;

case cl ubs: cout << "cl ubs"; br eak;
case hearts: cout << "hearts"; br eak;
case spades: cout << "spades"; br eak;
}

cout << endl;

}

cis15-spring2009-parsons-lectl.2 8

e Thet ypedef keyword can be used to create names for data
types

e Atypedef name is just a synonym.

® For example:
typedef int nunbers; // "nunbers" is ny nane
typedef char letters; // "letters" is ny name

typedef enum suits { dianonds, clubs,
hearts, spades };

® Then you use the name you've created (nunbers,l etters or
sui t s from the example above)

cis15-spring2009-parsons-lect].2 9

Precedence and associativity‘

¢ “Precedence” means the order in which multiple operators are
evaluated

e “Associativity” means which value an operator associates with,
which is particularly good to know if you have multiple
operators adjacent to a single variable

e Associativity is either:
— left to right, e.g., 3 - 2 (subtract 2 from 3)
- right to left, e.g., - 3 (meaning negative 3)
® Note that ++ and —— can be either:

— postfix operators are left to right (meaning that you evaluate
the expression on the left first and then apply the operator)

— prefix operators are right to left (meaning that you apply the
operator first and then evaluate the expression on the right)

cis15-spring2009-parsons-lect].2 10

Precedence and associativity table|

(listed in order of precedence)

operator associativity
:: (global scope), :: (class scope) left to right
[, = >, ++ (postfix), —— (postfix), dynam c_cast <type> (etc) left to right
-+ (prefix); —— (postfix), |, si zeof (), + (unary), — (unary), * (indirection) | right to left
%, /, % left to right
+, — left to right
<<, >> left to right
<, <=, > >= left to right
=== left to right
& left to right
A left to right
| left to right
&& left to right
I left to right
?: left to right
=+=—=4%=/=%=>>=<<=&=/N=|= left to right

See prec. cpp

cis15-spring2009-parsons-lectl.2 11

e Branching;:
-if,
—-if-else,
—-switch

¢ Looping;:
-for,
-while,
—do...while

e See control . cpp

cis15-spring2009-parsons-lectl.2 12

'Command-line arguments|

® The UNIX commands we looked at last time are just C/C++
programs

® They have a different form of interaction from the programs you
wrote for CIS 1.5.

® Command line arguments.

g++ nyprog.cpp -0 nmyprog.o
e Turns out that C/C++ makes it easy to write programs like this.

cis15-spring2009-parsons-lect].2 13

‘Command-line arguments|

e Example:

#i ncl ude <i ostreanr
usi ng nanespace std;
int main(int argc, char *xargv) {
cout << "argc = " << argc << endl;
for (int i=0; i<argc; i++) {
cout << "[" << i << "]=" << argv[i] << endl;
}
} // end of main()

ecndl i ne. cpp

cis15-spring2009-parsons-lect].2 14

e Executed from the unix command-line like this:

uni x> ./a.out asdf 45
argc = 3

[0]=./a.out

[1] =asdf

[2] =45

® So we have a way of passing an arbitrary number of arguments
to a program.

cis15-spring2009-parsons-lectl.2 15

e ar gc tells us how many arguments there are.

® (Well, it actually says how many things are typed into the shell
program).

e ar gv gives us the arguments.
e ar gv is (roughly speaking) an array of strings
— Each thing typed into the shell is a stored as a string.
e To use the arguments, we have to do some manipulation.

¢ For example, we use at 0i to retrieve numerical arguments.

cis15-spring2009-parsons-lectl.2 16

e How would we write a simple calculator?

uni x> calc + 2 3
uni x> 5

unix> calc » 2 4
uni x> 8

uni x>

e It should be able to add, subtract, multiply and divide two
integers

cis15-spring2009-parsons-lect].2

Summary

e This lecture finished up our quick revision of the material from
CIS1.5

e We looked at:
- Type casting
— Enumeration types
—typedef
— Precedence and associativity
— Control flow
- Command line arguments

¢ The new thing we covered was the Unix/C++ mechanism for
handling command line arguments.

cis15-spring2009-parsons-lect].2 18

