
CONSTRUCTORS AND DESTRUCTORS

Today

• Today we will look constructors and destructors.

• These are important additional concepts in handling classes and
objects.

• We will also briefly cover polymorphism and overloading, and
mention friend classes, composition and derivation.

• This material is taken from Pohl, Chapter 5, mainly 5.1–5.3, 5.7
and 5.10.

cis15-spring2009-parsons-lectII.2 2

ctors and dtors

• An object is a class instance.

• House metaphor: the blueprint for the house is like a class; the
constructed house is like an object).

• The allocation of memory to create (instantiate) an object is
called construction; freeing memory (aka deallocation) when the
program is done using the object is called destruction.

• A ctor (constructor) is a member function used to allocate the
memory required by an object.

• A constructor always has the same name as the class it
constructs.

• A dtor (destructor) is a member function used to deallocate (free)
the object’s memory, after the object is no longer needed.

cis15-spring2009-parsons-lectII.2 3

• There are two ways to invoke the ctor and dtor.

• A constructor is invoked when:

– An object is declared.

– An object is created using the C++ keyword new.

• A destructor is invoked when:

– Program execution reaches the end of the block of code in
which the object was created.

– The object is deleted using the C++ keyword delete .

• Constructors can be overloaded (i.e., programmers can write their
own versions); destructors cannot.

• Constructors can take arguments; destructors cannot.

• ctors and dtors do not have data types; they do not return values.

cis15-spring2009-parsons-lectII.2 4

ctor and dtors for “point”

• Here’s our old friend point .

class point {
private:

double x, y;
public:

// These are constructors
point() { x = 0; y = 0; }
point(double u) { x= u; y = 0; }
point(double u, double v) { x = u; y = v; }
// End of contructors
void print() const;
void set(double u, double v);

};

• You can find an example that is very much like this in
point-with-constructor.cpp .

cis15-spring2009-parsons-lectII.2 5

Constructor details

• All constructors have the same name as the class (point in this
case) and have no return type.

• The default constructor.

– The default constructor is the one that takes no arguments.

– If you don’t define one, the system creates the default.

– You can overload the default constructor with or without
arguments of your own.

• Constructor initializer.

– You can use a constructor to initialize class data members.

– This is the main reason for having constructors.

cis15-spring2009-parsons-lectII.2 6

• A constructor is called when you create an instance of a class.

• Given the definition above,

point p;

will create a point object, called p with its data members set to 0;

• Similarly the call:

point p(1);

will create a point object with its x value set to 1 and its y value
set to 0;

• while:

point p(3, 4);

will create a point object with its x value set to 3 and its y value
set to 4;

cis15-spring2009-parsons-lectII.2 7

• Constructors have a special syntax for initialising variables.

• For example, instead of:

point::point(double u) { x = u; }

you can use a constructor initializer like this:

point::point(double u) : x(u) { }

and instead of:

point::point(double u, double v) { x = u; y = v; }

you can use:

point::point(double u) : x(u), y(v) { }

• The syntax is as follows:

member-name (expression-list),member-name (expression-list)

where each member is initialized to the expression in parenthesis

cis15-spring2009-parsons-lectII.2 8

Conversion constructors

• Constructors can be used to convert data from one type to
another.

• For example (in program printChar.cpp) :

class pr_char {
private:

int c;
static const char * rep[5];

public:
pr_char(int i=0) : c(i % 5) { }
void print() const { cout << rep[c]; }

};

• The constructor here performs a conversion from integer to
pr_char .

cis15-spring2009-parsons-lectII.2 9

• The conversion constructor makes it possible to write:

for (int i=0; i<5; i++) {
c = i; // NOTE how this is done
c.print();

}

• Having conversion constructors isn’t necessarily good practice.

• It only works where the constructor is initializing one data
element.

• By default, any constructor with a single argument is assumed to
be a conversion constructor.

cis15-spring2009-parsons-lectII.2 10

• To control this, we use the keyword explicit .

• Placing this in front of a constructor definition tells the compiler
that is isn’t safe to allow the constructor to be used for
conversion:

explicit charStack(int size) : max_len(size), top(EMPTY)
{ s = new char[size];}

• Example comes from stack-with-ctors.cpp

cis15-spring2009-parsons-lectII.2 11

Another constructor example

• Example from book:

class counter {
private:
int value; // 0 to 99
public:
counter(int i); // ctor declaration
void reset() { value = 0; }
int get() const { return value; }
void print() const { cout << value << ’\t’; }
void click() { value = (value+1) % 100; }
}
// constructor definition:
inline counter::counter(int i) { value = i % 100; }

cis15-spring2009-parsons-lectII.2 12

• inline is (another) new keyword.

• It means that the compiler can try to replace the function call by
the function body code; this avoids function call invokation and
can speed up program execution;

• inline isn’t required here, nor is it required by constructors in
general

cis15-spring2009-parsons-lectII.2 13

Copy constructors

• This is a somewhat complicated detail that has to do with what
happens when an object is used as a call-by-value argument to a
function.

• We mentioned briefly about the use of the run-time stack and
how memory is allocated and deallocated when functions are
called.

• When the arguments to functions are primitive data types (e.g.,
int), then this is easy.

• But when the arguments to functions are objects, what happens
locally inside the function? how is a “local copy” made for use
inside the function?.

• This is where a copy constructor is needed.

cis15-spring2009-parsons-lectII.2 14

• This is defined by using a call-by-value argument to a version of
a constructor

• For example:

charStack::charStack(const charStack& stk)
: top(stk.top), FULL(stk.FULL), length(stk.length) {

stack = new char[stk.length];
memcpy(stack, stk.stack, length);

}

• This is another example from stack-with-ctors.cpp .

• Copy constructors are typically needed when the objects being
copied have data members that are pointers.

• The signature for a copy constructor of class myClass will
always be myClass(const myClass&)

cis15-spring2009-parsons-lectII.2 15

Destructors

• Defined as the name of the class preceded by a tilde (∼)

• The default destructor will delete an object when the program
reaches the end of the scope of that object (block where it is
declared).

• You can write your own destructor to free up additional memory
used by the object.

• Example, free up the array used by the stack:

class charStack {

˜charStack() { delete []stack; }

}

• Again, this is in stack-with-ctors.cpp .

cis15-spring2009-parsons-lectII.2 16

Polymorphism and overloading

• polymorphism—giving different meanings to the same function or
operator, i.e., “having many forms”. Lets us use different
implementations of a single class

• overloading—creating new versions of functions with the same or
different arguments

• When you overload a function, the name of the function is the
same, but what is does is different from the default

• Operators can also be overloaded

• signature matching is what the compiler uses when there are
multiple versions of a function (or operator) to determine which
version should be invoked

• Textbook goes into a LOT of detail about this—we’ll come back
to it more later in the semester.

cis15-spring2009-parsons-lectII.2 17

Friend classes

• Allows two or more classes to share private members and
functions

– e.g., container and iterator classes

• Friendship is not transitive.

• Since friendship violates the usual rules about hiding members,
you need to use it with care.

• In fact you should try not to use friend .

– When writing code from scratch you should be able to avoid
it.

– It tends to be used when quickly patching code.

cis15-spring2009-parsons-lectII.2 18

cis15-spring2009-parsons-lectII.2 19

class tweedledee {
...

friend class tweedledum;

int cheshire();
...
};

• This allows any instance of tweedledum to access any member
of any instance of tweedledee .

• However no instance of tweedledee can access any private
member of tweedledum .

cis15-spring2009-parsons-lectII.2 20

Friend functions

• Friendship can also be at the individual function level.

• A non-member friend function can have access to the private
components in a class.

• Extending the previous example:

void alice() {
...
}

class tweedledum {
...

friend void alice() // prototypes for friend functions
friend int tweedledee::cheshire ();

...
};

cis15-spring2009-parsons-lectII.2 21

• This allows alice and cheshire to access the data in instances
of tweedledum .

• For concrete example see the program robots.cpp

• If this example seems contrived, that’s because it is :-)

• friend is like that — unless you realy need it, it seems rather
superfluous.

cis15-spring2009-parsons-lectII.2 22

Hierarchy with composition and derivation

• Composition:

– Creating objects with other objects as members

• Derivation:

– Defining classes by expanding other classes

class roomba: public robot {
private:

string type;

public:
void setType(string s);
void vacuum(double x, double y);

};

• Like “extends” in java.

cis15-spring2009-parsons-lectII.2 23

• “Base class” (robot)

• “Derived class” (roomba)

• Complete example in robots.cpp

• Derived class can only access publicmembers of base class

• public vs private derivation:

– public derivation means that users of the derived class can
access the public portions of the base class

– private derivation means that all of the base class is
inaccessible to anything outside the derived class

– private is the default

cis15-spring2009-parsons-lectII.2 24

Derivation and friendship

• Friendship is not the same as derivation!

• Example:

– b2 is a friend of b1

– d1 is derived from b1

– d2 is derived from b2

• In this case:

– b2 has special access to private members of b1, as a friend

– But d2 does not inherit this special access

– Nor does b2 get special access to d1 (derived from friend b1)

• arrays.cpp gives a more interesting example than
robots.cpp , but you need to be comfortable with pointers.

• We’ll talk about derivation more later in the course.

cis15-spring2009-parsons-lectII.2 25

Summary

• This lecture has looked at:

– Constructors and destructors

– Polymorphism, overloading

– Friends

– Composition and derivation

• For most of these topics, it has been a first look; we will come
back to them over and over again through the semester.

cis15-spring2009-parsons-lectII.2 26

