CONSTRUCTORS AND DESTRUCTORS

¢ Today we will look constructors and destructors.

¢ These are important additional concepts in handling classes and
objects.

e We will also briefly cover polymorphism and overloading, and
mention friend classes, composition and derivation.

e This material is taken from Pohl, Chapter 5, mainly 5.1-5.3, 5.7
and 5.10.

cis15-spring2009-parsons-lectl.2

\ctors and dtors|

® An object is a class instance.

¢ House metaphor: the blueprint for the house is like a class; the
constructed house is like an object).

® The allocation of memory to create (instantiate) an object is
called construction; freeing memory (aka deallocation) when the
program is done using the object is called destruction.

e A ctor (constructor) is a member function used to allocate the
memory required by an object.

e A constructor always has the same name as the class it
constructs.

e A dtor (destructor) is a member function used to deallocate (free)
the object’s memory, after the object is no longer needed.

cis15-spring2009-parsons-lectll.2

¢ There are two ways to invoke the ctor and dtor.
e A constructor is invoked when:

— An object is declared.
— An object is created using the C++ keyword new.

e A destructor is invoked when:

— Program execution reaches the end of the block of code in
which the object was created.

— The object is deleted using the C++ keyword delete

e Constructors can be overloaded (i.e., programmers can write their
own versions); destructors cannot.

¢ Constructors can take arguments; destructors cannot.

e ctors and dtors do not have data types; they do not return values.

cis15-spring2009-parsons-lectll.2

ctor and dtors for “point”

e Here’s our old friend point

class point {
private:
double X, v;
public:
/I These are constructors
point) { x = 0; y = 0; }
point(double u) { x=u; y = 0; }
point(double u, double v) { x = u; y = v; }
/I End of contructors
void print() const;
void set(double u, double v);

h

® You can find an example that is very much like this in
point-with-constructor.cpp

cis15-spring2009-parsons-lectl.2

'Constructor details|

e All constructors have the same name as the class (point in this
case) and have no return type.

e The default constructor.
— The default constructor is the one that takes no arguments.

- If you don’t define one, the system creates the default.

— You can overload the default constructor with or without
arguments of your own.

e Constructor initializer.

— You can use a constructor to initialize class data members.
— This is the main reason for having constructors.

cis15-spring2009-parsons-lectl.2

® A constructor is called when you create an instance of a class.
e Given the definition above,

point p;

will create a point object, called p with its data members set to 0;
e Similarly the call:

point p(1);

will create a point object with its X value set to 1 and its y value
set to 0;

e while:
point p(3, 4);

will create a point object with its x value set to 3 and its y value
set to 4;

cis15-spring2009-parsons-lectll.2

e Constructors have a special syntax for initialising variables.
e For example, instead of:

point::point(double u) { x = u; }
you can use a constructor initializer like this:
point::point(double u) : x(u) { }
and instead of:
point::point(double u, double v) { x = u; y = v; }
you can use:
point::point(double u) : x(u), y(v) { }
¢ The syntax is as follows:
member-name (expression-list),member-name (expression-list)

where each member is initialized to the expression in parenthesis

cis15-spring2009-parsons-lectll.2

8

'Conversion constructors|

e Constructors can be used to convert data from one type to
another.

e For example (in program printChar.cpp):

class pr_char {
private:
int c;
static const char * rep[5];

public:
prchar(int i=0) : c(i % 5) {}
void print() const { cout << rep[c]; }

k

® The constructor here performs a conversion from integer to
pr_char

cis15-spring2009-parsons-lectl.2 9

® The conversion constructor makes it possible to write:

for (int i=0; i<5; i++) {
¢ = i; // NOTE how this is done
c.print();

}

¢ Having conversion constructors isn’t necessarily good practice.

e It only works where the constructor is initializing one data
element.

® By default, any constructor with a single argument is assumed to
be a conversion constructor.

cis15-spring2009-parsons-lectl.2 10

e To control this, we use the keyword explicit

¢ Placing this in front of a constructor definition tells the compiler
that is isn’t safe to allow the constructor to be used for
conversion:

explicit charStack(int size) : max_len(size), top(EMPTY)
{ s = new char[size];}

e Example comes from stack-with-ctors.cpp

cis15-spring2009-parsons-lectll.2 11

'Another constructor example|

e Example from book:

class counter {

private:

int value; // 0 to 99

public:

counter(int i); // ctor declaration

void reset() { value = 0; }

int get() const { return value; }

void print() const { cout << value << '\t }
void click() { value = (value+l) % 100; }
}

/I constructor definition:

inline counter::counter(int i) { value = i % 100; }

cis15-spring2009-parsons-lectll.2 12

e inline is (another) new keyword.

e It means that the compiler can try to replace the function call by
the function body code; this avoids function call invokation and
can speed up program execution;

e inline isn’t required here, nor is it required by constructors in
general

cis15-spring2009-parsons-lectl.2 13

‘Copy constructors

e This is a somewhat complicated detail that has to do with what
happens when an object is used as a call-by-value argument to a
function.

® We mentioned briefly about the use of the run-time stack and
how memory is allocated and deallocated when functions are

called.

® When the arguments to functions are primitive data types (e.g.,
int), then this is easy.

¢ But when the arguments to functions are objects, what happens
locally inside the function? how is a “local copy” made for use
inside the function?.

e This is where a copy constructor is needed.

cis15-spring2009-parsons-lectl.2 14

e This is defined by using a call-by-value argument to a version of
a constructor

® For example:

charStack::charStack(const charStack& stk)
. top(stk.top), FULL(stk.FULL), length(stk.length) {
stack = new char[stk.length];
memcpy(stack, stk.stack, length);

}
e This is another example from stack-with-ctors.cpp

e Copy constructors are typically needed when the objects being
copied have data members that are pointers.

® The signature for a copy constructor of class myClass will
always be myClass(const myClass&)

cis15-spring2009-parsons-lectll.2 15

¢ Defined as the name of the class preceded by a tilde (~)

¢ The default destructor will delete an object when the program
reaches the end of the scope of that object (block where it is
declared).

® You can write your own destructor to free up additional memory
used by the object.

¢ Example, free up the array used by the stack:

class charStack {

“charStack() { delete [|stack; }

}

¢ Again, this is in stack-with-ctors.cpp

cis15-spring2009-parsons-lectll.2 16

Polymorphism and overloading

® polymorphism—giving different meanings to the same function or
operator, i.e., “having many forms”. Lets us use different
implementations of a single class

e overloading—creating new versions of functions with the same or
different arguments

® When you overload a function, the name of the function is the
same, but what is does is different from the default

® Operators can also be overloaded

e signature matching is what the compiler uses when there are
multiple versions of a function (or operator) to determine which
version should be invoked

® Textbook goes into a LOT of detail about this—we’ll come back
to it more later in the semester.

cis15-spring2009-parsons-lectl.2 17

Friend classes

e Allows two or more classes to share private members and
functions

- e.g., container and iterator classes
e Friendship is not transitive.

e Since friendship violates the usual rules about hiding members,
you need to use it with care.

e In fact you should try not to use friend

— When writing code from scratch you should be able to avoid
it.

— It tends to be used when quickly patching code.

cis15-spring2009-parsons-lectl.2 18

cis15-spring2009-parsons-lectll.2 19

class tweedledee {
friend class tweedledum;
int cheshire();
¥
e This allows any instance of tweedledum to access any member
of any instance of tweedledee

e However no instance of tweedledee can access any private
member of tweedledum

cis15-spring2009-parsons-lectll.2 20

'Friend functions|

e Friendship can also be at the individual function level.

® A non-member friend function can have access to the private
components in a class.

e Extending the previous example:

void alice() {
}
class tweedledum {

friend void alice() // prototypes for friend functions
friend int tweedledee::cheshire ();

cis15-spring2009-parsons-lectl.2 21

e This allows alice and cheshire to access the data in instances

of tweedledum .
e For concrete example see the program robots.cpp
e If this example seems contrived, that’s because it is :-)

e friend is like that — unless you realy need it, it seems rather
superfluous.

cis15-spring2009-parsons-lectl.2

22

Hierarchy with composition and derivation

e Composition:

— Creating objects with other objects as members
® Derivation:

— Defining classes by expanding other classes

class roomba: public robot {
private:
string type;

public:
void setType(string s);
void vacuum(double x, double y);

k

e Like “extends” in java.

cis15-spring2009-parsons-lectll.2 23

e “Base class” (robot)

e “Derived class” (roomba)

¢ Complete example in robots.cpp

¢ Derived class can only access public members of base class
e public vsprivate derivation:

— public derivation means that users of the derived class can
access the public portions of the base class

—private derivation means that all of the base class is
inaccessible to anything outside the derived class

— private is the default

cis15-spring2009-parsons-lectll.2

24

Derivation and friendship|

e Friendship is not the same as derivation!
e Example:

— b2 is a friend of bl

—d1 is derived from bl

— d2 is derived from b2
e In this case:

— b2 has special access to private members of bl, as a friend
— But d2 does not inherit this special access
— Nor does b2 get special access to d1 (derived from friend bl)

e arrays.cpp
robots.cpp

gives a more interesting example than
, but you need to be comfortable with pointers.

o We'll talk about derivation more later in the course.

cis15-spring2009-parsons-lectl.2

25

Summary

e This lecture has looked at:

— Constructors and destructors
- Polymorphism, overloading

— Friends

— Composition and derivation

e For most of these topics, it has been a first look; we will come
back to them over and over again through the semester.

cis15-spring2009-parsons-lectl.2

26

