
COMPOSITION AND INHERITANCE



Today

• Today we will look at:

– Composition; and

– Inheritance

• These are the cornerstones of object oriented programming.

• This material is taken from Pohl, Chapter 8.

cis15-spring2009-parsons-lectIV.1 2



An example

• Consider the program rabbit.cpp which you can download
from the class web site (Unit IV).

• This models a small ecosystem which holds:

– A rabbit

– Some carrots

• The rabbit runs around looking for carrots and eating them.

• The class definition for the rabbit class is as follows

cis15-spring2009-parsons-lectIV.1 3



class rabbit {

private:
point location;
int consumed;

public:
rabbit(){consumed = 0;};
int getX() const;
int getY() const;
void set(int x, int y);
void print() const;
void move();
void move(direction d);
void eat();
bool hungry();

};

cis15-spring2009-parsons-lectIV.1 4



Composition

• The rabbit class includes a member of the point class, which
we have played with before.

• We say that rabbit is related to point by composition.

• This just means what we see here — one class has an instance of
another as a data member.

• Another example of composition in rabbit.cpp is that the
class world contains instances of both carrot and rabbit.

cis15-spring2009-parsons-lectIV.1 5



• Several of the function members (methods) of rabbit look like
those for point.

– getX()

– getY()

– set(int x, int y)

• These data members provide a to alter the values of the
attributes of the instance of point that is a member of rabbit.

• Since the data member location is private within rabbit,
any program we write can’t just use the function members of
point.

cis15-spring2009-parsons-lectIV.1 6



• So this, for example:

rabbit peter;
peter.location.getX();

would not compile.

• Instead we have to write accessor functions like
rabbit::getX() which calls point::getX()

• This is the reason behind the functions that look like they only
exist to call similar functions in point.

cis15-spring2009-parsons-lectIV.1 7



• Other methods are new:

– move()

– eat()

– hungry()

• These give us the functionality we want from rabbit, allowing
it to move, to report whether it is hungry, and to eat.

• If you haven’t done so already, you should run the program
rabbit and see how it works.

• Now imagine that we want to extend the program to include a
fox, which runs around the world and eats rabbits.

• One way we could do this is to write a fox class that looks like
the following.

cis15-spring2009-parsons-lectIV.1 8



class fox {

private:
point location;
int consumed;

public:
fox(){consumed = 0;};
int getX() const;
int getY() const;
void set(int x, int y);
void print() const;
void move();
void move(direction d);
void eat();
bool hungry();

};

cis15-spring2009-parsons-lectIV.1 9



• This is exactly like the rabbit class since fox and rabbit are
so similar.

• Both have a location in the world, move around, and eat things.

• Since they are so similar, writing both out seems a bit repetitive,
and dull with it.

• It turns out that there is an alternative to doing this.

• The alternative is to use inheritance and this is considered better
style than having lots of classes with (more or less) the same
functionality.

cis15-spring2009-parsons-lectIV.1 10



Inheritance

• A program that handles the fox and rabbit example using
inheritance is rabbit3.cpp on the class web page.

• The relationship between the classes is summarised by:

animal

rabbit fox

• That is the class rabbit and the class fox are both subclasses of
the class animal.

• Alternatively, every instance of a rabbit is an instance of
animal and every instance of fox is an instance of animal.

cis15-spring2009-parsons-lectIV.1 11



• We define fox as:

class fox : public animal {

};

• This is the syntax for saying that fox has exactly the same
members as animal.

• The keyword public indicates that all the publicmembers of
animal remain public in fox.

• If we replaced public with private, then all the public
members of animal would become private in fox.

• We will say more about this next lecture.

cis15-spring2009-parsons-lectIV.1 12



• Normally we want to do more than have a subclass just be a
copy of the superclass.

• What we often want to do is to have the subclass add things to
the superclass.

• (In Java this is explicit. When we define a subclass it is by saying
it extends the superclass).

• rabbit is an example of this.

cis15-spring2009-parsons-lectIV.1 13



class rabbit : public animal {

private:

bool eaten;

public:

rabbit(){eaten = false;};
void beEaten();

};

void rabbit::beEaten(){
cout << "Drat that fox!" << endl;
eaten = true;

}

cis15-spring2009-parsons-lectIV.1 14



• Here rabbit is extends animal with:

– A private data member eaten, which records whether the
rabbit has been eaten by the fox; and

– A public function member beEaten that takes appropriate
action when the rabbit is eaten.

• Thus rabbit has all of the data members of animal as well as
the additional ones listed here.

• As a result we can do this:

rabbit peter;
peter.set(2, 3);

which calls the setmethod on the rabbit peter.

• rabbit inherits the setmethod from animal.

cis15-spring2009-parsons-lectIV.1 15



Overriding and inheritance

• A sub-class definition can re-define a function member defined
in the super-class.

• This is called overriding.

• We can, for example, override the definition of move in fox.

• The program rabbit3.cpp has:

class fox : public animal {

public:
void move();
void move(direction d);

};

giving new definitions for how the fox moves.

cis15-spring2009-parsons-lectIV.1 16



Aside: “protected”

• It turns out (as you can see in rabbit3.cpp) that we need to
make the animal vclass a little different from the rabbit class
that we started with.

• The problem is that to allow move to be overridden in fox, we
have to change the value of location in fox.

• Now, location is private to animal, so fox cannot alter it.

• One answer is to make location not private but
protected.

• protected data members sit somewhere between public
members, which are accessible to any object, and private
members, which are only accessible within that class.

cis15-spring2009-parsons-lectIV.1 17



• Roughly speaking, protected members are like private data
members but are also accessible by members of derived classes.

• So a protected data member in animal is accessible by
rabbit and fox, but not by carrot.

• In contrast, if we made location public, it would also be
accessible by objects of class carrot.

• We will talk more about protected later on.

cis15-spring2009-parsons-lectIV.1 18



More inheritance

• Since rabbit is a subclass of animal, we can carry out any
operation on a rabbit that we can on a animal.

• We already know that this is the case where the operations are
function members of animal with simple parameters.

• Thus we can do:

rabbit peter;
peter.set(2, 3);
peter.move();

calling methods from animal on rabbit.

cis15-spring2009-parsons-lectIV.1 19



• It turns out we can go a bit further than this also.

• If we have:

bool animal::hungrier(animal a1, animal a2){
if(a1.consumed < a2.consumed){

return true;
}
else {

return false;
}

we can pass this two rabbits, two foxes, or a rabbit and a
fox.

cis15-spring2009-parsons-lectIV.1 20



Virtual functions

• The program rabbit5.cpp is a cleaner version of our little
ecosystem.

• By defining a class living, we can exploit the fact that carrot
has some aspects (to do with location) that are just like rabbit
and fox,.

• We have the class hierarchy:

animal

rabbit fox

living

plant

carrot

cis15-spring2009-parsons-lectIV.1 21



• Not all of the functions that exist in the sub-classes make sense in
the super class.

– For example, since plants do not move, it makes little sense to
have a move class in living.

• The function beEaten, does apply to all living things and so
could be defined in living.

• However, in our example, every class implements beEaten in
its own way.

• C++ style suggests that we should define functions like
beEaten that we know will be overridden as virtual functions.

• We do this by adding the keyword virtual before the function
prototype:

virtual void beEaten();

cis15-spring2009-parsons-lectIV.1 22



• The virtual function beEaten in living will never be called.

• All objects are carrots, rabbits, or foxes, and these all define their
own way to beEaten.

• In such cases we should define beEaten in living as a pure
virtual function.

• We do this by:

virtual void beEaten() = 0;

• Any class that has at least one pure virtual function is an abstract
class.

• You cannot create instances of abstract classes.

cis15-spring2009-parsons-lectIV.1 23



Why have virtual functions?
• There are (at least) three reasons.

• First because it makes sense in the context of the class hierarchy.

– The ability to be eaten is a property of living things so it
should be defined at the level of living.

– However, each living thing will beEaten in a different way
so we don’t want to say exactly how it will happen.

• Second, because we want to prevent anyone making an instance
of class living.

• Third, because you want to force all sub-classes of living to
define their own beEaten.

– If you have a sub-class that doesn’t create a new beEaten
and override the abstract version, that sub-class will be
virtual also, and you won’t be able to make instances of it.

cis15-spring2009-parsons-lectIV.1 24



Summary

• This lecture has looked at a number of issues related to object
oriented programming in C++.

– Composition of classes

– Inheritance

– Overriding;

– Virtual functions; and

– Abstract classes.

cis15-spring2009-parsons-lectIV.1 25


