COMPOSITION AND INHERITANCE




Today

® Today we will look at:

— Composition; and
— Inheritance

® These are the cornerstones of object oriented programming.

® This material is taken from Pohl, Chapter 8.

cis15-spring2009-parsons-lectIV.1




An example

® Consider the program r abbi t . cpp which you can download
from the class web site (Unit IV).

® This models a small ecosystem which holds:

— A rabbit
— Some carrots

® The rabbit runs around looking for carrots and eating them.

® The class definition for the r abbi t class is as follows

cis15-spring2009-parsons-lectIV.1




class rabbit {

private:
poi nt | ocation;
| nt consuned;

public:
rabbit (){consuned = 0;};
I nt getX() const;
int getY() const;
void set(int x, int y);
void print() const;
voi d nove();
voi d nove(direction d);
void eat();
bool hungry();

'

cis15-spring2009-parsons-lectIV.1




Composition

e Ther abbi t class includes a member of the poi nt class, which
we have played with before.

e We say that r abbi t is related to poi nt by composition.

® This just means what we see here — one class has an instance of
another as a data member.

® Another example of composition in r abbi t . cpp is that the
class wor | d contains instances of both car r ot and r abbi t .

cis15-spring2009-parsons-lectIV.1




e Several of the function members (methods) of r abbi t look like
those for poi nt .

—get X()
- get Y()
—set(int x, int vy)

® These data members provide a to alter the values of the
attributes of the instance of poi nt that is a member of r abbi t .

e Since the data member | ocati onis pri vat e within r abbi t,
any program we write can’t just use the function members of
poi nt .

cis15-spring2009-parsons-lectIV.1




® So this, for example:

rabbit peter;
peter.|location.getX();

would not compile.

® Instead we have to write accessor functions like
rabbit:: get X() which calls poi nt:: get X()

® This is the reason behind the functions that look like they only
exist to call similar functions in poi nt .

cis15-spring2009-parsons-lectIV.1




e Other methods are new:
—nmove()
—eat ()
—hungry()

® These give us the functionality we want from r abbi t , allowing
it to move, to report whether it is hungry, and to eat.

* If you haven’t done so already, you should run the program
rabbi t and see how it works.

e Now imagine that we want to extend the program to include a
fox, which runs around the world and eats rabbits.

® One way we could do this is to write a f 0x class that looks like
the following.

cis15-spring2009-parsons-lectIV.1




class fox {

private:
poi nt | ocation;
| nt consuned;

public:
fox(){consuned = 0;};
I nt getX() const;
int getY() const;
void set(int x, int y);
void print() const;
voi d nove();
voi d nove(direction d);
void eat();
bool hungry();

'

cis15-spring2009-parsons-lectIV.1




® This is exactly like the r abbi t class since f ox and r abbi t are
so similar.

e Both have a location in the world, move around, and eat things.

e Since they are so similar, writing both out seems a bit repetitive,
and dull with it.

e It turns out that there is an alternative to doing this.

® The alternative is to use inheritance and this is considered better
style than having lots of classes with (more or less) the same
functionality.

cis15-spring2009-parsons-lectIV.1 10




Inheritance

® A program that handles the f ox and r abbi t example using
inheritance is r abbi t 3. cpp on the class web page.

® The relationship between the classes is summarised by:

animal

RN

rabbit fox

e That is the class r abbi t and the class f ox are both subclasses of
the class ani mal .

* Alternatively, every instance of a r abbi t is an instance of
ani mal and every instance of f 0X is an instance of ani mal .

cis15-spring2009-parsons-lectIV.1 11




e We define f ox as:

class fox : public animal {

b
e This is the syntax for saying that f ox has exactly the same
members as ani mal .

® The keyword publ | ¢ indicates that all the publ | ¢ members of
ani mal remain publ i c in f ox.

e [f we replaced publ | ¢ with pri vat e, then all the publ i c
members of ani mal would become pri vat e in f ox.

* We will say more about this next lecture.

cis15-spring2009-parsons-lectIV.1 12




® Normally we want to do more than have a subclass just be a
copy of the superclass.

e What we often want to do is to have the subclass add things to
the superclass.

® (In Java this is explicit. When we define a subclass it is by saying
it ext ends the superclass).

e r abbi t is an example of this.

cis15-spring2009-parsons-lectIV.1 13




class rabbit : public animl {

private:
bool eaten;
publ i c:

rabbit(){eaten = fal se;};
voi d beEaten();

b

voi d rabbit::beEaten(){
cout << "Drat that fox!"
eaten = true;

}

cis15-spring2009-parsons-lectIV.1

<< endl ;

14




e Here r abbi t is extends ani nal with:

— A pri vat e data member eat en, which records whether the
rabbi t has been eaten by the fox; and

— A publ | ¢ function member beEat en that takes appropriate
action when the r abbi t is eaten.

e Thus r abbi t has all of the data members of ani mal as well as
the additional ones listed here.

® As a result we can do this:

rabbit peter;
peter.set(2, 3);

which calls the set method on the r abbi t peter.

e r abbi t inherits the set method from ani nal .

cis15-spring2009-parsons-lectIV.1 15




Overriding and inheritance

e A sub-class definition can re-define a function member defined
in the super-class.

e This is called overriding.
e We can, for example, override the definition of nove in f ox.

® The program r abbi t 3. cpp has:

class fox : public animl {

publ i c:
voi d nove();
voi d nove(direction d);

'

giving new definitions for how the fox moves.

cis15-spring2009-parsons-lectIV.1

16




Aside: “protected”

e [t turns out (as you can see in r abbi t 3. cpp) that we need to
make the ani nal vclass a little different from the r abbi t class
that we started with.

® The problem is that to allow nove to be overridden in f 0x, we
have to change the value of | ocat i on in f ox.

e Now, location is pri vat e to ani mal , so f ox cannot alter it.

e One answer is to make | ocat i on not pri vat e but
pr ot ect ed.

e pr ot ect ed data members sit somewhere between publ i ¢
members, which are accessible to any object, and pri vat e
members, which are only accessible within that class.

cis15-spring2009-parsons-lectIV.1 17




® Roughly speaking, pr ot ect ed members are like pri vat e data
members but are also accessible by members of derived classes.

® So a pr ot ect ed data member in ani nal is accessible by
rabbi t and f ox, butnot by carr ot .

¢ In contrast, if we made | ocat i on publ i ¢, it would also be
accessible by objects of class carr ot .

e We will talk more about pr ot ect ed later on.

cis15-spring2009-parsons-lectIV.1 18




More inheritance

e Since r abbi t is a subclass of ani mal , we can carry out any
operation on a r abbi t that we can on a ani mal .

® We already know that this is the case where the operations are
function members of ani mal with simple parameters.

® Thus we can do:

rabbit peter;
peter.set (2, 3);
peter. nove();

calling methods from ani mal onr abbi t.

cis15-spring2009-parsons-lectIV.1

19




e It turns out we can go a bit further than this also.

e [f we have:

bool animal::hungrier(animal al, animal a2){
| f (al. consuned < a2.consuned){
return true;
}
el se {
return fal se;

}

we can pass this two r abbi t s, two f oxes, orarabbit and a
f oX.

cis15-spring2009-parsons-lectIV.1

20




Virtual functions

® The program r abbi t 5. cpp is a cleaner version of our little
ecosystem.

® By defining a class | i vi ng, we can exploit the fact that car r ot
has some aspects (to do with location) that are just like r abbi t
and f ox,.

® We have the class hierarchy:

animal plant
PN }
rabbit fox carrot

cis15-spring2009-parsons-lectIV.1




e Not all of the functions that exist in the sub-classes make sense in
the super class.

— For example, since plants do not move, it makes little sense to
have a nove classin | I vi ng.

® The function beEat en, does apply to all living things and so
could be defined in | 1 vi ng.

e However, in our example, every class implements beEat en in
its own way.

® C++ style suggests that we should define functions like
beEat en that we know will be overridden as virtual functions.

® We do this by adding the keyword vi r t ual before the function
prototype:

virtual void beEaten();

cis15-spring2009-parsons-lectIV.1 22




® The virtual function beEat en in | | vi ng will never be called.

e All objects are carrots, rabbits, or foxes, and these all define their
own way to beEat en.

® In such cases we should define beEat enin| i vi ng as a pure
virtual function.

® We do this by:
virtual void beEaten() = O;

® Any class that has at least one pure virtual function is an abstract
class.

® You cannot create instances of abstract classes.

cis15-spring2009-parsons-lectIV.1 23




Why have virtual functions?

® There are (at least) three reasons.
® First because it makes sense in the context of the class hierarchy:.

— The ability to be eaten is a property of living things so it
should be defined at the level of | | Vi ng.

— However, each living thing will beEat en in a different way
so we don’t want to say exactly how it will happen.

® Second, because we want to prevent anyone making an instance
of class | i vi ng.

® Third, because you want to force all sub-classes of | I vi ng to
define their own beEat en.

— If you have a sub-class that doesn’t create a new beEat en
and override the abstract version, that sub-class will be
virtual also, and you won’t be able to make instances of it.

cis15-spring2009-parsons-lectIV.1 24




Summary

® This lecture has looked at a number of issues related to object
oriented programming in C++.

— Composition of classes
— Inheritance

— Overriding;

— Virtual functions; and
— Abstract classes.

cis15-spring2009-parsons-lectIV.1

25




