
INHERITANCE & OBJECT-ORIENTED
PROGRAMMING

Today

• Today we will look at object-oriented programming in more
detail.

• In particular we will look at:

– Composition versus inheritance

– Access to base classes

– public, private and protected.

– Multiple inheritance and virtual classes

– UML and object-oriented design.

•Much of this lecture refers to the program rabbit4.cpp which
we developed in the previous lecture, and which can be
downloaded from the course web-page.

• This material is taken from Pohl, Chapters 8 and 11.

cis15-fall2007-parsons-lectIV.2 2

Composition and inheritance

•We use composition when one class contains a data member that
is an object of another class.

• Thus in rabbit4.cpp, the class living contains a data
member location which is an object of the class point.

• Thus living and point are related by composition.

• Any object of type living thus includes an object, called
location, of type point.

• To access the private data members of location from within
an object that contains it, we have to use the public function
members of point.

cis15-fall2007-parsons-lectIV.2 3

•We use inheritancewhen one class extends another class, as in:

class animal : public living

from rabbit4.cpp.

• Here living is called the base class or super-class and animal is
called the sub-class.

•We can think of this as meaning that an object of class animal
contains all the data and function members of class living.

• If we had an object a of class animal, we would refer to its
member location by:

a.location

cis15-fall2007-parsons-lectIV.2 4



• And the data member x of location as:

a.location.x

• However, it is not quite as simple as that.

• The way that C++ implements inheritance is such that an object
of class animal contains an object of class living (rather than
the members of that object).

• Access to the members of this sub-object follow the usual access
rules.

• Thus the private data members of living are not accessible
from within animal.

• This is typically not what we want.

cis15-fall2007-parsons-lectIV.2 5

“public”, “private” and “protected”
• One way to handle the fact that a sub-class can’t access the
private members of a base class is to write publicmethods
that access them.

•Methods like set, getX and getY for point.

• Another approach is to redefine the private members as
protected.

• Thus:

class living {

protected:

point location;
bool eaten;

};

cis15-fall2007-parsons-lectIV.2 6

• Using protected here means that the members are treated as
public in classes derived from living (like animal).

• However, for classes that are not derived from living, the
protected data members are treated like they are private.

• This is exactly what we want in rabbit4.cpp.

• The general question of how sub-classes can access members of
base classes is more complex than this, however.

cis15-fall2007-parsons-lectIV.2 7

Access to base class members

• Each member of a base class can be:

– public

– protected

– private

• Classes can also be derived as:

– class A : public B

– class A : protected B

– class A : private B

• These access levels interact.

cis15-fall2007-parsons-lectIV.2 8



• If we have class A : public B

– public and protectedmembers of B remain public and
protected in A.

• If we have class A : protected B

– public and protectedmembers of B are protected in A.

• If we have class A : private B

– public and protectedmembers of B become private in
A.

• Of course, even if base class members are private they can be
accessed by friend classes.

• (Now would be a good time to go back and recap friend
classes).

cis15-fall2007-parsons-lectIV.2 9

Multiple inheritance

• In statements of class derivation like

class A : public B

we are not limited to deriving from a single base class.

•We can have, for example:

class A : public B, private C

• This is called multiple inheritance.

• In the latter case A has all of the members of B and C.

cis15-fall2007-parsons-lectIV.2 10

• As an example of multiple inheritance, consider a variation on
the classes in rabbit4.cpp.

•We could have:

class predator: public living{

public:
void eat();
};

class prey: public living{

public:
void beEaten();
};

cis15-fall2007-parsons-lectIV.2 11

• carrot is then a sub-class of prey, and fox is a sub-class of
predator.

• rabbit is both predator and prey (it eats carrots but is eaten by
foxes), so we would define:

class rabbit: public predator, public prey

• This illustrates a common problem with multiple inheritance.

•We have the class hierarchy:

carrotrabbit

living

predator prey

fox

cis15-fall2007-parsons-lectIV.2 12



• rabbit now inherits from living twice, once through
predator and once through prey.

• This means it has two copies of all the members that it inherits
from living.

• If we have:

rabbit peter;

peter.location.set(1, 2);

it is ambiguous which location this refers to.

• It is possible to get around this problem using virtual base
classes.

cis15-fall2007-parsons-lectIV.2 13

• If we define:

class predator: virtual public living{

public:
void eat();
};

class prey: virtual public living{

public:
void beEaten();
};

class rabbit: public predator, public prey{
};

then rabbit will only contain one copy of living.

• For more on virtual base classes, see the textbook.

cis15-fall2007-parsons-lectIV.2 14

Unified Modelling Language

• The unified modelling language or UML is a method of designing
and documenting object-oriented designs.

•We are already familiar with the idea of drawing the relationship
between classes:

animal

rabbit fox

living

plant

carrot

UML expands on this.

cis15-fall2007-parsons-lectIV.2 15

• UML uses the same notation as we have been using already to
show inheritance between classes.

• UML adds a graphical representation of composition:

living point

indicates that living includes an object of type point

• UML also shows the data and function members that a class
contains.

• The full UML representation of living and point from
rabbit4.cpp is shown on the next slide.

cis15-fall2007-parsons-lectIV.2 16



point

x
y

print
set
getX
getY

print
set
getX
getY

beEaten

eaten
location

living

cis15-fall2007-parsons-lectIV.2 17

• Clearly we could expand the rest of the class heirarchy with this
additional information.

• The idea behind UML is to use this graphical notation to develop
the class design before coding.

• The diagrams also serve as a form of documentation.

• Tools for drawing UML diagrams, tutorials and much more can
be found at http://www.uml.org/.

cis15-fall2007-parsons-lectIV.2 18

Summary

• This class has looked at some of the finer points of
object-oriented programming.

•We recapped the difference between inheritance and
composition and covered:

– Access to base class members.

– public, private and protected.

– Multiple inheritance

– UML

• Next lecture we will go on to look at pointers.

cis15-fall2007-parsons-lectIV.2 19


