
ARRAYS AND POINTERS

Today

• Today we will look at:

– Arrays

– Pointers

– Arrays of objects

• This material is kind of covered in Chapter 3 by Pohl.

• All the examples in these notes are on the class website.

cis15-spring2009-parsons-lectV.1 2

Overview of arrays and pointers

• Arrays and pointers are strongly related

int A[10]; // declare an array of 10 ints
int *pA; // declare a pointer to an int
pA = &A[0]; // pA points to the 0th element

// of of A
pA = A; // this has the same effect

• Pointer arithmetic is meaningful with arrays:

If we do

pA = &A[0];

then *(pA + 1) points to A[1]

cis15-spring2009-parsons-lectV.1 3

• Remember the difference between (*pA) + 1 and *(pA + 1)
(which == *pA + 1)

• Note that an array name is a pointer, so we can also do *(A +
1) and in general:

– *(A + i) == A[i] and so are A + i == &A[i]

• The difference:

– An array name is a constant, and a pointer is not.

– So we can do: pA = A and pA++ but we can NOT do: A =
pA or A++

• When an array name is passed to a function, what is really
passed is a pointer to the array.

cis15-spring2009-parsons-lectV.1 4

Arrays review

• A string is an array of characters

• An array is a “regular grouping or ordering”

• A data structure consisting of related elements of the same data
type

• Arrays need:

– Data type

– Name

– Length

cis15-spring2009-parsons-lectV.1 5

• Length can be determined:

– statically — at compile time.

char str1[10];

– dynamically — at run time

char *str2;

• We’ll talk about how to do dynamic declaration later.

cis15-spring2009-parsons-lectV.1 6

Arrays and memory

• Defining a variable is called “allocating memory” to store that
variable

• Defining an array means allocating memory for a group of bytes,
i.e., assigning a label to the first byte in the group

• Individual array elements are indexed

– Starting with 0

– Ending with length − 1

• Indices follow array name, enclosed in square brackets ([])
e.g., arr[25]

cis15-spring2009-parsons-lectV.1 7

Character array example

// example: arrays0c.cpp

#include <iostream>
using namespace std;

const int MAX = 6;

int main(void) {
char str[MAX] = "ABCDE";
int i;
for (i=0; i<MAX-1; i++) {
cout << str[i] << " ";

}
cout << endl;

} /* end of main() */

cis15-spring2009-parsons-lectV.1 8

Integer array example

// example: arrays0i.cpp

#include <iostream>
using namespace std;

const int MAX = 6;

int main() {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
int i;
for (i=0; i<MAX; i++) {
cout << arr[i] << " ";

}
cout << endl;

} /* end of main() */

cis15-spring2009-parsons-lectV.1 9

Pointers overview

• A pointer contains the address of an element

• Allows one to access the element “indirectly”

• & is a unary operator that gives address of its argument

• * is a unary operator that fetches contents of its argument (i.e.,
its argument is an address)

• Note that & and * bind more tightly than arithmetic operators

• You can print the value of a pointer using cout with the pointer
or using C-style printing (e.g., printf()) and the formatting
character %p

cis15-spring2009-parsons-lectV.1 10

Pointers and memory

• Variables that contain memory addresses as their values

• Other data types we’ve learned about use direct addressing

• Pointers facilitate indirect addressing

• Declaring pointers:

– Pointers indirectly address memory where data of the types
we’ve already discussed is stored (e.g., int, char, float,
etc.—even classes)

– Declaration uses asterisks (*) to indicate a pointer to a
memory location storing a particular data type

• Example:

int *count;
float *avg;

cis15-spring2009-parsons-lectV.1 11

• Ampersand & is used to get the address of a variable

• Example:

int count = 12;
int *countPtr = &count;

• &count returns the address of count and stores it in the pointer
variable countPtr

• A picture:

countPtr count
• → 12

cis15-spring2009-parsons-lectV.1 12

Here’s another example:

int i = 3, j = -99;
int count = 12;
int *countPtr = &count;

and here’s what the memory looks like:

variable name memory location value

count 0xbffff4f0 12
i 0xbffff4f4 3
j 0xbffff4f8 -99
...
countPtr 0xbffff600 0xbffff4f0
...

cis15-spring2009-parsons-lectV.1 13

Address arithmetic

• An array is some number of contiguous memory locations

• An array definition is really a pointer to the starting memory
location of the array

• And pointers are really (big) integers

• So you can perform integer arithmetic on them

• e.g., +1 increments a pointer, -1 decrements

• You can use this to move from one memory location to another

• Often this is used to access one array element after another

cis15-spring2009-parsons-lectV.1 14

// pointers0.cpp

#include <iostream>
using namespace std;

int main() {

int i, *j, arr[5];

for (i=0; i<5; i++) {
arr[i] = i;

}

cout << "arr=" << arr << endl;
cout << endl;

cis15-spring2009-parsons-lectV.1 15

for (i=0; i<5; i++) {
cout << "i=" << i << " arr[i]=" << arr[i];
cout << " &arr[i]=" << &arr[i] << endl;

}

cout << endl;

j = &arr[0];
cout << "j=" << j;
cout << " *j=" << *j;
cout << endl << endl;;

j++;
cout << "after adding 1 to j: j=" << j;
cout << " *j=" << *j << endl;

}

cis15-spring2009-parsons-lectV.1 16

The output is:

arr=0xbffff864

i=0 arr[i]=0 &arr[i]=0xbffff864
i=1 arr[i]=1 &arr[i]=0xbffff868
i=2 arr[i]=2 &arr[i]=0xbffff86c
i=3 arr[i]=3 &arr[i]=0xbffff870
i=4 arr[i]=4 &arr[i]=0xbffff874

j=0xbffff864 *j=0

after adding 1 to j: j=0xbffff868 *j=1

NOTE that the absolute pointer values can change each time you
run the program! BUT the relative values will stay the same.

cis15-spring2009-parsons-lectV.1 17

// pointers1.cpp

#include <iostream>
using namespace std;

int main() {

int x, y; // declare two ints
int *px; // declare a pointer to an int

x = 3; // initialize x

px = &x; // set px to the value of the address of x; i.e., to point

y = *px; // set y to the value stored at the address pointed
// to by px; in other words, the value of x

printf("x=%d px=%p y=%d\n",x,px,y);

cis15-spring2009-parsons-lectV.1 18

x++; // increment x

printf("x=%d px=%p y=%d\n",x,px,y);

(*px)++; // increment the value stored at the address
// pointed to by px

printf("x=%d px=%p y=%d\n",x,px,y);

*px++; // take away the parens

printf("x=%d px=%p y=%d\n",x,px,y);

// since px has changed, what does it point to now?

printf("*px=%d\n",*px);

}

cis15-spring2009-parsons-lectV.1 19

and the output is...

step 0: here is what we start with: x=3 px=0xbffff874 y=3
step 1: after incrementing x: x=4 px=0xbffff874 y=3
step 2: after incrementing (*px): x=5 px=0xbffff874 y=3
step 3: after incrementing *px: x=5 px=0xbffff878 y=3

and *px=3

cis15-spring2009-parsons-lectV.1 20

and here’s a picture of what’s going on:

step 3:

3 3x =

px

y =

this is the initial situation:
 x is initialized to the value 3
 px is initialized to point to x
 y is initialized to the value pointed to by x

step 0:

4 3x =

px

y =

here is the situation after incrementing xstep 1:

5 3x =

px

y =

here is the situation after incrementing (*px),
i.e., the value that px points to, in other words, x

step 2:

3 3

px

x = y =

here is the situation after incrementing px
i.e., the POINTER increments, in other words,
it moves to point to the next contiguous item in
memory, in this case, y

cis15-spring2009-parsons-lectV.1 21

Pointers and references

• Pointers (same as in C):

– int *pmeans “pointer to int”

– p = &imeans p gets the address of object i

• References (not in C):

– They are basically aliases — alternative names — for the
values stored at the indicated memory locations,

int n;
int &nn = n;
double arr[10];
double &last = arr[9];

• The difference between them is shown by refs.cpp on the class
website.

cis15-spring2009-parsons-lectV.1 22

Arrays of objects

• You can create arrays of objects.

/* arrayso.cpp */

#include <iostream>
using namespace std;

class Point {
private:

int x, y;
public:

Point() { }
Point(int x0, int y0) : x(x0), y(y0) { }
void set(int x0, int y0) { x = x0; y = y0; }
void print() const { cout << "(" << x << "," << y << ") "; }

};

cis15-spring2009-parsons-lectV.1 23

• Each element of the array is an object, and is handled in the
usual way.

int main() {
Point triangle[3];
triangle[0].set(0,0);
triangle[1].set(0,3);
triangle[2].set(3,0);
cout << "here is the triangle: ";
for (int i=0; i<3; i++) {
triangle[i].print();

}
cout << endl;

}

cis15-spring2009-parsons-lectV.1 24

Pointers to objects

• You can also create pointers to objects just as you create pointers
to primitive data types

• In the example below, we demonstrate dynamic memory allocation
by declaring a pointer to an array and then LATER declaring the
memory for the array using the new function.

• At the end of the program, we call the delete function to
de-allocate the memory (it’s not really necessary at the end of a
program, but you might want to use it inside a program to keep
your memory management clean).

• We’ll talk more about dynamic memory allocation and memory
management in the next lecture...

cis15-spring2009-parsons-lectV.1 25

• Assuming the same definition of point as before.

int main() {
Point *triagain = new Point[3];
assert(triagain != 0);
triagain[0].set(0,0);
triagain[1].set(0,3);
triagain[2].set(3,0);
cout << "tri-ing again: ";
for (int i=0; i<3; i++) {
triagain[i].print();

}
cout << endl;
delete[] triagain;

}

cis15-spring2009-parsons-lectV.1 26

Summary

• This lecture has looked at

– Pointers

– Arrays

– References

and it began to explore the notion of dynamic memory
allocation.

• The next lecture will look at dynamic memory allocation in more
detail.

cis15-spring2009-parsons-lectV.1 27

