
RECURSION

Today

• This lecture looks at

– The basics of recursion.

– Some examples of recursive functions.

• The textbook doesn’t cover recursion in any detail (the only
material is on pages 96 and 97 in my copy)..

cis15-fall2007-parsons-lectVI.1 2

Recursion
• Recursion is defining something in terms of itself

• There are many examples in nature:

– Seeds in a sunflower

• . . . in mathematics:

– Factorial

– Induction

• . . . and in computer graphics:

– Koch snowflake

cis15-fall2007-parsons-lectVI.1 3

Koch snowflake

• Starting with a line, then:

1. Divide each line into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment
from step 1 as its base and points outward.

3. Remove the line segment that is the base of the triangle from
step 2.

• Repeat as often as you like.

cis15-fall2007-parsons-lectVI.1 4

• Here are the first four iterations of the Koch snowflake.

• The more iterations, the more snowflaky it looks.

cis15-fall2007-parsons-lectVI.1 5

Power function

• Power is defined recursively:

xy =















if y == 0, xy = 1
otherwise, xy = x ∗ xy−1

• There are two parts to the definition:

– The base case, what we do when y is zero.

– The recursive case, what we do when y is not zero.

• This is the common pattern for all recursive definitions.

cis15-fall2007-parsons-lectVI.1 6

Here it is in C++

// r1.cpp
#include <iostream>
using namespace std;

int power(int x, int y) {
if (y == 0)

return(1);
else

return(x * power(x, y-1));
} // end of power()

int main() {
cout << "2ˆ3 = " << power(2,3) << endl;

}

cis15-fall2007-parsons-lectVI.1 7

• Notice that power() calls itself!

• This seems to be magic, but we’ll see how it is done in a moment.

• You can make recursive calls with any method except main()

• BUT beware of infinite loops!!!

• You have to know when and how to stop the recursion — what
is the stopping condition.

cis15-fall2007-parsons-lectVI.1 8

Walking through power(2,4)

• Initial call is power(2, 4)

call x y return value

1 power(2,4) 2 4 2 * power(2,3)
2 power(2,3) 2 3 2 * power(2,2)
3 power(2,2) 2 2 2 * power(2,1)
4 power(2,1) 2 1 2 * power(2, 0)
4 power(2,0) 2 0 1

• The first is the original call

• Followed by four recursive calls

cis15-fall2007-parsons-lectVI.1 9

Stacks

• The computer uses a data structure called a stack to keep track of
what is going on

• Think of a stack like a stack of plates

• You can only take off the top one

• You can only add more plates to the top

• This corresponds to the two basic stack operations:

– push— putting something onto the stack

– pop — taking something off of the stack

• When each recursive call is made, power() is pushed onto the
stack

• When each return is made, the corresponding power() is
popped off of the stack

cis15-fall2007-parsons-lectVI.1 10

Another example: factorial

• factorial is defined recursively:

N! =















if N == 1, N! = 1
otherwise, N! = N ∗ (N − 1)!

(for N > 0)

cis15-fall2007-parsons-lectVI.1 11

Here it is in C++

// r2.cpp
#include <iostream>
using namespace std;

int factorial (int N) {
if (N == 1)

return(1);
else

return(N * factorial(N-1));
} // end of factorial()

int main() {
cout << "5! = " << factorial(5) << endl;

}

cis15-fall2007-parsons-lectVI.1 12

• Walk through factorial(4)

cis15-fall2007-parsons-lectVI.1 13

Another example

//r3.cpp
#include <iostream>
using namespace std;

void countDown (int n) {
if (n <= 0)

cout << "Blastoff!" << endl;
else {

cout << "Time to launch is " << n << " seconds" << endl;
countDown(n - 1);

}
} // end of countDown()

int main() {
countDown(5);

}

cis15-fall2007-parsons-lectVI.1 14

• What is the output of this program?

cis15-fall2007-parsons-lectVI.1 15

• Now, let’s switch the statements in the recursive case around.

//r4.cpp
#include <iostream>
using namespace std;

void countDown (int n) {
if (n <= 0)

cout << "Blastoff!" << endl;
else {

countDown(n - 1);
cout << "Time to launch is " << n << " seconds" << endl;

}
} // end of countDown()

int main() {
countDown(5);

}

cis15-fall2007-parsons-lectVI.1 16

• What is the output of this program?

cis15-fall2007-parsons-lectVI.1 17

• Again countDown has the general structure:

// base case part

if (<base-case condition>)
return <base-case-value>

// general case

else
return <recursively computed expression>

• This is common to all recursive functions — the only difference
you’ll see is that some functions have two base cases.

cis15-fall2007-parsons-lectVI.1 18

Fibonacci

// in r5.cpp

int fibonacci (int n) {
if (n == 0){

return 0;
}
else

if (n == 1){
return 1;

}
else {

return(fibonacci(n - 1) + fibonacci(n -2));
}

} // end of fibonacci()

cis15-fall2007-parsons-lectVI.1 19

• – A tiling where tile sides are successive members of the
Fibonacci sequence.

– A spiral constructed from the above tiling.

cis15-fall2007-parsons-lectVI.1 20

Recursive and iteration

• You can use recursion to iterate.

• (Iteration = repetition, what you would normally do with a
loop).

• The following slide has an example.

• Compare printI() (iterative) with printR() (recursive).

cis15-fall2007-parsons-lectVI.1 21

// recursion-iteration.cpp
#include <iostream>
using namespace std;

class array {
private:

int * data;
int size;

public:
array(int n) : size(n) { data = new int[n]; }
void set(int x, int v) { data[x] = v; }
void printI();
void printR(int x);

}; // end of class array

cis15-fall2007-parsons-lectVI.1 22

void array::printI() {
for (int i=0; i<size; i++)

cout << data[i] << " ";
cout << endl;

} // end of printI()

void array::printR(int x) {
if (x < size) {

cout << data[x] << " ";
printR(x+1);

}
else {

cout << endl;
}

} // end of printR()

cis15-fall2007-parsons-lectVI.1 23

int main() {
array A(5);
for (int i=0; i<5; i++)

A.set(i,i * 10);
cout << "output from iterative printI(): ";
A.printI();
cout << "output from recursive printR(): ";
A.printR(0);

} // end of main() method

and the output is:

output from iterative printI(): 0 10 20 30 40
output from recursive printR(): 0 10 20 30 40

cis15-fall2007-parsons-lectVI.1 24

And the details...

• In the recursive version, each call is like one iteration inside the
for loop in the iterative version

call index output next call

1 printR(0) 0 0 printR(1)
2 printR(1) 1 10 printR(2)
3 printR(2) 2 20 printR(3)
4 printR(3) 3 30 printR(4)
5 printR(4) 4 40 printR(5)
6 printR(5) 5 endl (none)

cis15-fall2007-parsons-lectVI.1 25

• With recursion, each time the function is invoked, one step is
taken towards the resolution of the task the function is meant to
complete.

• Before each step is executed, the state of the task being
completed is somewhere in the middle of being completed.

• After each step, the state of the task is one step closer to
completion.

• In the example above, each time printR(i) is called, the
array is printed from the i-th element to the end of the array.

• In the power(x,y) example, each time the function is called,
power is computed for each xy, in terms of the previous xy−1.

• In the factorial(N) example, each time the function is called,
factorial is computed for each N, in terms of the previous N − 1.

cis15-fall2007-parsons-lectVI.1 26

Summary

• This lecture has looked at

– The basic idea of recursion

– A bunch of different examples of recursion

• You will find that the idea of recursion gets easier to cope with as
you get more familiar with it.

• That means, like all programming ideas, it gets easier with use.

cis15-fall2007-parsons-lectVI.1 27

