
JUST ENOUGH UNIX

What is Unix
• Unix is an operating system (like Windows).

• That means it is a program that runs on a computer, and which
makes it possible for you to use the computer (typically to run
other programs).

• In some ways it is relatively old

– The first Unix was written in the 1970s

– It turns out that this is a strength :-)

• In some ways it is relatively new

– There are new versions of Unix coming out all the time

• There are many flavors of Unix

– OSX, Linux, SunOS and so on

– There are many flavors of Linux also.

cis15-spring2010-parsons-lectI.Ib 2

Unix is and isn’t a WIMP

• You are most familiar with WIMP environments.

– WIMP stands for “window, icon, menu, pointing device”.

• While many Unix systems support this kind of interaction much
Unix functionality doesn’t need this.

• This is both a strength and a weakness.

• It also means that you need to learn to use the command line.

cis15-spring2010-parsons-lectI.Ib 3

A little history

• Developed at AT&T Bell Laboratories in the 1970s.

• Released and distributed free of charge since AT&T was not
allowed to compete in the computer industry at the time.

• Primarily created initially by Ken Thompson and Dennis Ritchie,
coming after an interactive, multiuser operating system they had
conceived earlier called multics—this became jokingly “unics”
which evolved into UNIX and was released in 1971

• But early UNIX wasn’t perfect, and so researchers at UCal
Berkeley created a cleaner version, released in 1982 as “BSD”
(Berkeley Software Distribution)

cis15-spring2010-parsons-lectI.Ib 4

• Later, in 1991, Linus Torvalds (Finland), developed a version of
UNIX for personal computers—Linux

• Today, there are basically four main versions of Unix:

– System V UNIX (stems from original AT&T version)

– BSD UNIX (Berkeley)

– Linux

– OS X (Mac)

• All now have decent windowing environments.

cis15-spring2010-parsons-lectI.Ib 5

Features of UNIX

• “Open” software — non-proprietary, meaning that no single
company or person owns it or is in charge of developing and/or
maintaining it.

• Multi-tasking —meaning multiple programs can be running at
one time, even on a single CPU system;

• This is called timesharingwhere the operating system provides
small slices of time to multiple programs; switching between
which one is actually running in any given millisecond is
imperceptible to the user.

• Even a personal computer running UNIX has this ability.

• Typically this means that several people can use the same
computer at the same time (though not the same keyboard and
screen :-)

cis15-spring2010-parsons-lectI.Ib 6

• Components:

– kernel — resident in computer’s main memory; primary
resource manager; task/process manager.

– file system— organizes files.

– shell — interactive component that lets users enter commands
on a “command-line” at a prompt (e.g., unix>).

– commands — set of system utilities that come with the
operating system which the user can invoke from the
command-line.

cis15-spring2010-parsons-lectI.Ib 7

Taking command
• Our use of Unix will be with the Unbuntu flavor of the Linux
operating system used by the machines on our laptop cart..

• Like any modern Unix system, Ubuntu comes with a graphical
interface..

• The bit we’ll make use of is the standard Unix.

• However, we will work with the operating system through the
Terminal utility, a version of the shell.

• When you run this, you get a window with something like:

student>

• This is the command line. A line on which you type commands.

• The bit of text on the command line before you type anything is
called the prompt.

cis15-spring2010-parsons-lectI.Ib 8

Making commands

• In Unix, the way you get the operating system to do things is to
type instructions on the command line (and then hit “return”).

• The things you type are the names of programs you want the
system to run.

• For example typing:

date

after the prompt (and hitting return) gives you the date.

cis15-spring2010-parsons-lectI.Ib 9

• Similarly,

who

tells you who is using the computer (not so helpful on a
single-user machine), and:

exit

or

logout

will stop the terminal window from running.

cis15-spring2010-parsons-lectI.Ib 10

The Unix filesystem

• The Unix filesystem is the part of Unix that organizes and keeps
track of data.

• You need to know a bit about how it works.

• As you already know, a file is a collection of related data.

• Unix has files like this (“ordinary” or “regular” files) and also
has:

– Device files (special files), which represent pieces of hardware
like the screen, or a printer, or a USB memory key.

– Directory files, which organise ordinary and device files.

• Directory files (or just “directories”) are similar to the folders
you are familiar with fromWindows.

cis15-spring2010-parsons-lectI.Ib 11

Directory tree example

• The file system is organised into trees:

/home/parsons/
|

+-------+--------+---------+
| | |

classes/ mail/ public_html/
| | |

+------+------+ suz index.html
| | jen

cis1.5/ cis15/ lex
| |

hello.cpp hello2.cpp
hello.exe

cis15-spring2010-parsons-lectI.Ib 12

File system structure

• A typical Unix filesystem is structured like this:

bin dev homeetc tmp usr var

root(/)

cis15-spring2010-parsons-lectI.Ib 13

More structure

• bin: most of the commonly used Unix commands

• dev: device files

• etc: administrative files (including the password file)

• home: home directories

• tmp: temporary files

• usr: a variety of stuff, depending on the version of Unix

• var: frequently varying data.

cis15-spring2010-parsons-lectI.Ib 14

Location, location, location

• Every file has an address.

• That is its location in the filesystem.

• Unix calls this location its path

• For example, a file call myprog.cpp that is in my home
directory will have an (asolute) path(name) of:

/home/parsons/myprog.cpp

cis15-spring2010-parsons-lectI.Ib 15

More location

• In a sense, the command line has a location as well.

• Each time you have a terminal window open, it is “looking at” a
directory.

• You can find out which directory it is by typing:

pwd

• If I do this right after I open the terminal, I get:

/home/parsons

cis15-spring2010-parsons-lectI.Ib 16

Moving around

• We can move between directories

• If I’m in /home/parsons and I type

ls

I get a listing of that directory, something like:

admin code courses
myprog.cpp papers

• To move to the directory code, I would then type:

cd code

• Both ls (list) and cd (change directory) are Unix commands.

cis15-spring2010-parsons-lectI.Ib 17

More moving around

• If I’m in /home/parsons/code and I want to move back to
home/parsons, I can type:

cd /home/parsons

or

cd ../

• ../ is like saying “the parent of the current directory”.

• Don’t mistype. ./means “this directory”, so:

cd ./

has no effect (it changes to the current directory).

cis15-spring2010-parsons-lectI.Ib 18

Moving things
• If I’m in /home/parsons and I want to move
/home/parsons/myprog.cpp into /home/parsons/code, I
can type:

mv myprog.cpp /home/parsons/code

or

mv myprog.cpp code

• Using:

mv myprog.cpp code/prog.cpp

will not just move the file, but will also change its name.

• Using cp rather than mv will copy the file rather than move it.

cis15-spring2010-parsons-lectI.Ib 19

Moving things again

• If I’m in /home/parsons/code and I want to move
/home/parsons/myprog.cpp into /home/parsons/code, I
can type:

mv /home/parsons/myprog.cpp .

or

mv ../myprog.cpp .

• The . is also like saying “here”.

• (In fact saying “.” is exactly the same thing as saying “./”).

cis15-spring2010-parsons-lectI.Ib 20

Windows in UNIX

• Generic “windows” facilitate user access to multiple tasks
(“processes”) running at the same time

• The Window manager controls “look & feel” of windows

• X Windows developed at MIT (Massachusetts Institute of
Technology) for use with UNIX; still the most popular with all
flavors of UNIX.

cis15-spring2010-parsons-lectI.Ib 21

Basic Unix commands

• Some commands:

– man

– pwd

– cd

– ls

– mkdir

– rmdir

– cp

– mv

– rm

– chmod

• UNIX IS CASE-SENSITIVE!!!

• Commands have options or parameters or “switches”.

• Switches start with “–”

cis15-spring2010-parsons-lectI.Ib 22

man

• get help (display manual page)

• man — display manual pages (get help!)

• man man— display manual page for the man command

• man ls — display manual page for the ls command

• man -k file — list all commands with the keyword file

cis15-spring2010-parsons-lectI.Ib 23

• For example:

unix> man pwd
PWD(1) FSF PWD(1)

NAME
pwd - print name of current/working directory

SYNOPSIS
pwd [OPTION]

DESCRIPTION
Print the full filename of the current working directory.

--help display this help and exit

--version
output version information and exit

NOTE: your shell may have its own version of pwd, which
usually supercedes the version descibed here.

...

cis15-spring2010-parsons-lectI.Ib 24

pwd

• Print working directory

unix> pwd
/home/parsons/teaching/cis15/notes

cis15-spring2010-parsons-lectI.Ib 25

cd

• Change working directory

unix> pwd
/home/parsons/
unix> cd classes
unix> pwd
/home/parsons/classes

cis15-spring2010-parsons-lectI.Ib 26

ls

• List the files in the current directory

• ls -aF — list all files and show their file types

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp

• ls -l — list files in long format

unix> ls -l hello.cpp
-rw-r--r-- 1 parsons faculty 187 Sep 5 10:45 hello.cpp

cis15-spring2010-parsons-lectI.Ib 27

mkdir

• Make (create) a directory

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp
unix> mkdir junk

cis15-spring2010-parsons-lectI.Ib 28

unix> ls -aF
./
../
.bashrc
classes/
junk/
mail/
hello.cpp

cis15-spring2010-parsons-lectI.Ib 29

rmdir

• Remove (delete) a directory

unix> ls -aF
./
../
.bashrc
classes/
junk/
mail/
hello.cpp
unix> rmdir junk

cis15-spring2010-parsons-lectI.Ib 30

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp

cis15-spring2010-parsons-lectI.Ib 31

cp

• Copy a file

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp
unix> cp hello.cpp hi.cpp

cis15-spring2010-parsons-lectI.Ib 32

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp
hi.cpp

cis15-spring2010-parsons-lectI.Ib 33

mv

• Move (rename) a file.

unix> ls -aF
./
../
.bashrc
classes/
mail/
hello.cpp
unix> mv hello.cpp howdy.cpp

cis15-spring2010-parsons-lectI.Ib 34

unix> ls -aF
./
../
.bashrc
classes/
mail/
howdy.cpp

cis15-spring2010-parsons-lectI.Ib 35

rm

• Remove (delete) a file

unix> ls -aF
./
../
.bashrc
classes/
mail/
hi.cpp
howdy.cpp
unix> rm hi.cpp

cis15-spring2010-parsons-lectI.Ib 36

unix> ls -aF
./
../
.bashrc
classes/
mail/
howdy.cpp

cis15-spring2010-parsons-lectI.Ib 37

chmod

• Change file mode

• 9 characters: -uuugggooo

• WHO: u = user, g = group, o = other users, a = all users (u + g +
o)

• WHAT: r = read, w = write, x = execute

• MODE: + = allow, - = don’t allow

cis15-spring2010-parsons-lectI.Ib 38

unix> ls -l hi.cpp
-rwxr-xr-x 1 parsons faculty 187 Sep 5 10:45 hi.cpp
unix> chmod a+w hi.cpp
unix> ls -l hi.cpp
-rwxrwxrwx 1 parsons faculty 187 Sep 5 10:45 hi.cpp

cis15-spring2010-parsons-lectI.Ib 39

Other UNIX commands

• diff: command used to compare the contents of two files
unix> diff file1.txt file2.txt

• more: command used to list the contents of a file (only works
well with plain text files!)
unix> more file1.txt

• wc: command used to count (and display) the number of
lines/words/characters in a file
unix> wc file1.txt

cis15-spring2010-parsons-lectI.Ib 40

Special characters: wild card matching
• You can use special characters on the unix command-line as
“wild cards” in order to apply a command to a set of files that
have similar characteristics

• The general wild card character is asterisk (*), which matches to
anything (zero or one or more of any character)

• For example:

unix> ls *.txt
will list any files that end with .txt, such as file1.txt

and file2.txt
while
unix> ls A*
will list any files that start with A, such as Abc.txt and A_to_Z,
but not aA

cis15-spring2010-parsons-lectI.Ib 41

• Similarly
unix> ls A*Z
will list any files that start with A and end with Z, such as AAAZ
and A_to_Z, but not AAAZ.txt

• Remember, file names and commands are case sensitive!

• A single character wild card is question mark (?), which matches
to one character

• For example:
unix> ls A?.txt
will list files such as AB.txt, but not A.txt or AAA.txt

• There is much more to say about pattern matching and regular
expressions but we probably won’t get to it this semester.

cis15-spring2010-parsons-lectI.Ib 42

Redirection

• You can “redirect” the output of a command or program to a file
using the redirection symbol: >

• For example:
unix> wc file1.txt > file2.txt
will count the number of characters, words and lines in
file1.txt and store the result in file2.txt. if you want to
see the result, then you have to display file2.txt:
unix> more file2.txt

• Redirection will create a new file (or first delete it if it exists) and
then write the command/program output to the new file

cis15-spring2010-parsons-lectI.Ib 43

• If you want to preserve the contents of the file to which the
output is being redirected, you can append to the end of the file
using >>

• For example:

unix> wc file1.txt >myfile.txt
unix> wc file2.txt >>myfile.txt
unix> more myfile.txt

cis15-spring2010-parsons-lectI.Ib 44

If you can’t remember all that

• Buy the T-shirt

cis15-spring2010-parsons-lectI.Ib 45

Using C++ under Unix

• In CIS 1.5, you used an integrated development environment
(IDE).

• Typically you used Dev C++ or CodeBlocks.

• The important operations that this IDE allowed you to carry out
were:

– Editing a C++ program.

– Compiling a C++ program

– Running a compiled program.

• You can carry out exactly the same steps under Unix.

• The way that you carry out the steps is different.

cis15-spring2010-parsons-lectI.Ib 46

Editing a C++ program

• We edit our C++ programs using an editor.

• One tool we can use for this is Emacs

• According to the GNU project (who provide it):

Emacs is the extensible, customizable, self-documenting
real-time display editor

• Emacs is free software.

• http://www.gnu.org/software/emacs/

cis15-spring2010-parsons-lectI.Ib 47

Free software

• Emacs is free in the sense that you have:

– The freedom to run the program, for any purpose (freedom 0).

– The freedom to study how the program works, and adapt it to
your needs (freedom 1).

– The freedom to redistribute copies so you can help your
neighbor (freedom 2).

– The freedom to improve the program, and release your
improvements to the public, so that the whole community
benefits (freedom 3).

• Access to the source code is a prerequisite for freedoms 1 and 3.

cis15-spring2010-parsons-lectI.Ib 48

Other editors

• If you don’t like Emacs, then there are a couple of other options.

• Nano is another free editor.

• Gedit is another editor that comes with Ubuntu.

• Vi is yet another editor that is commonly used on Unix systems.

cis15-spring2010-parsons-lectI.Ib 49

Compiling a C++ program

• To compile our C++ programs, we will use another GNU
product.

• This is g++, the GNU C++ compiler.

• We run the compiler (as we run any Unix command) by typing
on the command line.

• To compile the program myprog.cpp we need to type:

g++ myprog.cpp

at the prompt.

• If there are errors, g++ will report them on the screen.

• If there are no errors, g++ will run silently.

cis15-spring2010-parsons-lectI.Ib 50

g++

• If we just type:

g++ myprog.cpp

then g++ will create an output file called:

a.out

• If we want a more meaningful name, then we have to give one,
like:

g++ myprog.cpp -o myprog.o

cis15-spring2010-parsons-lectI.Ib 51

Running a C++ program

• Once your program has compiled successfully, you can run it.

• The compiled program, myprog.o is now something that can be
run, just like any other Unix command.

• All you have to do, more or less, is to type its name:

./myprog.o

• Any output that myprog produces will be displayed on the
screen

cis15-spring2010-parsons-lectI.Ib 52

Summary

• This lecture introduced some of the basic ideas that you will
need to know about the Unix operating system.

• We concentrated on the things that you will need to know in
order to:

– Edit;

– Compile; and

– Run C++ programs

under the Unix operating system.

cis15-spring2010-parsons-lectI.Ib 53

