
COMMAND LINE ARGUMENTS

Today

• We will recap some C++ basics

– Type casting

– Enumeration types

– typedef

– Precedence and associativity

– Control flow

• We’ll also introduce what is probably a new topic for most of
you:

– Command line arguments

cis15-spring2010-parsons-lectI.3 2

Type casting

• Used to convert between fundamental (simple) data types (e.g.,
int, double, char)

• There are two ways to do this

• The C way (technically obsolete):

double d = 65.0;
int i = (double)d;
char c = (char)i;

cis15-spring2010-parsons-lectI.3 3

• The C++ way:

– static_cast: for conversions that are “well-defined,
portable, intertable”; e.g., like the C ways, above.

– reinterpret_cast: for conversions that are
system-dependent (not recommended).

– const_cast: to create a modifiable copy of a const
variable; data type into which the value is cast must always
be a pointer or reference (see on).

– dynamic_cast: for converting between classes (to be
discussed later in the term)

cis15-spring2010-parsons-lectI.3 4

• Syntax:

static_cast<type>(variable)

• In practice this looks something like:

double d = 65.5;
int i;
i = static_cast<int>(d);

converts a double to an integer.

• Const casting:

const int c = 5;
my_func(const_cast<int&>(c));

passes a modifiable copy of c to the function.

• See cast.cpp on the web-page for Unit I.

cis15-spring2010-parsons-lectI.3 5

Enumeration types

• Used to declare names for a set of related items

• For example:
enum suit { diamonds, clubs, hearts, spades };

• Internally, each name is assigned an int value.

• The value assigned to the first name is zero.

• The value of each member of the list is then one more than its
lefthand neighbor.

• So in the above example, diamonds is actually 0, clubs is 1,
and so on.

cis15-spring2010-parsons-lectI.3 6

• You create an enum data type if you want to use the names
instead of the values, so you shouldn’t really care what the
values are internally.

• If you need to set the value explicitly, you can:

enum answer { yes, no, maybe = -1);

• If you do this you have to be careful about duplicated values (see
enum.cpp).

• syntax:

enum tag { value0, value1, ... valueN };

• The tag is optional.

• You can also declare variables of the enumerated type by adding
the variable name after the closing }

• See enum.cpp

cis15-spring2010-parsons-lectI.3 7

void showSuit(int card) {

enum suits { diamonds, clubs, hearts, spades } suit;

suit = static_cast<suits>(card / 13);

switch(suit) {
case diamonds: cout << "diamonds"; break;
case clubs: cout << "clubs"; break;
case hearts: cout << "hearts"; break;
case spades: cout << "spades"; break;
}

cout << endl;
}

cis15-spring2010-parsons-lectI.3 8

typedef

• The typedef keyword can be used to create names for data
types

• A typedef name is just a synonym.

• For example:

typedef int numbers; // "numbers" is my name
typedef char letters; // "letters" is my name
typedef enum suits { diamonds, clubs,

hearts, spades };

• Then you use the name you’ve created (numbers, letters or
suits from the example above)

• See typedef.cpp

cis15-spring2010-parsons-lectI.3 9

Precedence and associativity
• “Precedence” means the order in which multiple operators are
evaluated

• “Associativity” means which value an operator associates with,
which is particularly good to know if you have multiple
operators adjacent to a single variable

• Associativity is either:

– left to right, e.g., 3 - 2 (subtract 2 from 3)

– right to left, e.g., -3 (meaning negative 3)

• Note that ++ and −− can be either:

– postfix operators are left to right (meaning that you evaluate
the expression on the left first and then apply the operator)

– prefix operators are right to left (meaning that you apply the
operator first and then evaluate the expression on the right)

cis15-spring2010-parsons-lectI.3 10

Precedence and associativity table

(listed in order of precedence)

operator associativity

:: (global scope), :: (class scope) left to right

[], − >, ++ (postfix), −− (postfix), dynamic_cast<type> (etc) left to right

++ (prefix); −− (postfix), !, sizeof(), + (unary), − (unary), ∗ (indirection) right to left

∗, /, % left to right

+, − left to right

<<, >> left to right

<, <=, > >= left to right

==, ! = left to right

& left to right

∧ left to right

| left to right

&& left to right

|| left to right

? : left to right

=, + =, − =, ∗ =, / =, % =, >>=, <<=, & =, ∧ =, | = left to right

See prec.cpp

cis15-spring2010-parsons-lectI.3 11

Control flow

• Branching:

– if,

– if-else,

– switch

• Looping:

– for,

– while,

– do...while

• See control.cpp

cis15-spring2010-parsons-lectI.3 12

Random numbers
• To generate random numbers we use the function rand()

• For example;

int x;
x = rand();

• This assigns a random value to x. The value is somewhere
between 0 and (at least) 32767.

• To generate numbers between 0 and 6 we use:

x = rand() % 7;

• To generate numbers between 2 and 8 we use:

x = 2 + rand() % 7;

cis15-spring2010-parsons-lectI.3 13

• To use rand(), we need to add #include<cstdlib> to our
program.

• Each time we run our program rand() will produce some
(apparently) random numbers.

• But it will produce the same numbers each time we run the
program.

• To get different numbers each time we run the program, we need
to seed the random number generator.

• The usual way to do that is to add:

srand(time(NULL));

• The time(NULL) uses the clock to generate a seed.

• We have to add #include<ctime> to do this.

cis15-spring2010-parsons-lectI.3 14

Command-line arguments

• The UNIX commands we looked at last time are just C/C++
programs

• They have a different form of interaction from the programs you
wrote for CIS 1.5.

• Command line arguments.

g++ myprog.cpp -o myprog.o

• Turns out that C/C++ makes it easy to write programs like this.

cis15-spring2010-parsons-lectI.3 15

Command-line arguments

• Example:

#include <iostream>
using namespace std;
int main(int argc, char **argv) {

cout << "argc = " << argc << endl;
for (int i=0; i<argc; i++) {

cout << "[" << i << "]=" << argv[i] << endl;
}

} // end of main()

• cmdline.cpp

cis15-spring2010-parsons-lectI.3 16

• Executed from the unix command-line like this:

unix> ./a.out asdf 45
argc = 3
[0]=./a.out
[1]=asdf
[2]=45

• So we have a way of passing an arbitrary number of arguments
to a program.

cis15-spring2010-parsons-lectI.3 17

• argc tells us how many arguments there are.

• (Well, it actually says how many things are typed into the shell
program).

• argv gives us the arguments.

• argv is (roughly speaking) an array of strings

– Each thing typed into the shell is a stored as a string.

• To use the arguments, we have to do some manipulation.

cis15-spring2010-parsons-lectI.3 18

• As we saw above, accessing arguments can be done using
argv[i].

• The members of argv are strings.

• Well, actually they are not exactly strings, but if we want to use
them we can easily convert them into strings:

string s1;

s1 = argv[1];

if(s1 == "asdf"){
cout << "Correct!";

}

cis15-spring2010-parsons-lectI.3 19

• To convert these strings into actual numbers we need some extra
help.

• Functions atoi and atof can help us here.

• These are part of the cstdlib.

• We use atoi to retrieve integers.

• atoi(argv[2]) will convert the third element of argv into an
integer.

• atof(argv[3]) will convert the fourth element of argv into a
double.

cis15-spring2010-parsons-lectI.3 20

• How would we write a simple calculator?

unix> calc + 2 3
unix> 5
unix> calc * 2 4
unix> 8
unix>

• It should be able to add, subtract, multiply and divide two
integers

cis15-spring2010-parsons-lectI.3 21

Summary

• This lecture finished up our quick revision of the material from
CIS 1.5

• We looked at:

– Type casting

– Enumeration types

– typedef

– Precedence and associativity

– Control flow

– Command line arguments

• The new thing we covered was the Unix/C++ mechanism for
handling command line arguments.

cis15-spring2010-parsons-lectI.3 22

