
CLASSES AND OBJECTS

Today

• We will start to talk about object-oriented programming

• In particular we will talk about struct and class.

• We will show how to use these features of C++ to define
aggregate data types.

• We will show how to define methods that operate on these data
types.

• This work is based on Pohl, Chapter 4.

• Much of the work we will do for the next couple of weeks will be
concerned not only with what we can do in C++, but also the
style in which we do it.

cis15-spring2010-parsons-lectII.1 2

Aggregate data types

• New today: class and struct

• struct comes from C

• class is new in C++ and you should have learnt about it in CIS
1.5.

• Both are aggregate types, meaning that they group together
multiple fields of data.

• For example we have:

class point {
public:
double x, y;

};

cis15-spring2010-parsons-lectII.1 3

• We can also write:

struct s_point {
double x, y;

};

• Don’t forget to put a semi-colon at the end of the structure
definition!

cis15-spring2010-parsons-lectII.1 4

Aside: why is point useful?

• The idea behind point is that it represents information about
the location of something.

• Think of it as a pair of (Cartesian) coordinates.

• We group the coordinates together because they make no sense
separately — if we have the x coordinate of a thing, then it has a
y coordinate also.

• We will use point when we write a simulation of small
eco-system and of a robot operating in a simulated world. We
will do this in some of the homeworks.

cis15-spring2010-parsons-lectII.1 5

Back to aggregate data types

• In C, the tag (point) is optional and does not constitute a data
type (you need to use typedef as well).

• In C++, the tag is considered a data type, hence the above
example is a data type definition.

• This means that you can use point as a data type, e.g.:

point p;

• In other words, you can declare a variable p which is of type
point.

• p is called an object or an instance of class point.

cis15-spring2010-parsons-lectII.1 6

• The fields or elements of an aggregate data type are called
members.

• Members are referred to using “dot notation”, e.g.:

p.x = 7.0; p.y = 10.3;

• You can also use a pointer to access members of an aggregate
data type, e.g.:

p->x = 12.3;

but we will discuss pointers in the next unit, so don’t worry
about this now...

cis15-spring2010-parsons-lectII.1 7

• Just as you can define an object of type point:

point p;

you can define an array of these objects

point myPoints[3];

and even

point myPoints[3] = {{1, 2}, {3, 4}, {5, 6}};

which defines the array myPoints to hold three elements each
of which is a class of type point which holds two doubles,
and sets the values of these.

• We can then access the individual members as before:

cout << myPoints[1].x;

will, for example, print out 3.

cis15-spring2010-parsons-lectII.1 8

Member functions

• In C++, members of aggregate data types can be functions

• (C only allows data members)

• In object-oriented programming (OOP) lingo, the word
“method” is often used instead of “function”

• The reason to define functions inside an aggregate data type is to
follow the OOP principle of encapsulation—operations should be
packaged with data

• This is a style thing.

• For example:

cis15-spring2010-parsons-lectII.1 9

#include <iostream>
using namespace std;

class point {
public:

double x, y;
void print() {
cout << "(" << x << "," << y << ")\n";

}
void set(double u, double v) {
x = u;
y = v;

}
}; // end of class--don’t forget semi-colon!

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

}

cis15-spring2010-parsons-lectII.1 10

• Notes:

– Notice that the setmethod changes the values of the data
members—this is considered good OOP practise

– Defining the methods inside the class definition is called
“in-line declaration”; this is generally only okay for short,
concise methods

• The class scope operator can be used when in-line declarations are
inappropriate.

• For example:

cis15-spring2010-parsons-lectII.1 11

#include <iostream>
using namespace std;

class point {
public:

double x, y;
void print();
void set(double u, double v);

};

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {
x = u;
y = v;

} // end of set()

cis15-spring2010-parsons-lectII.1 12

• The methods can then be invoked from main.

• As for data members, we invoke function members using the dot
notation.

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

} // end of main()

cis15-spring2010-parsons-lectII.1 13

Class scope

• The class scope operator is two colons (::), as in our example:

void point::print() const {
cout << "(" << x << "," << y << ")\n";

}

• The :: operator has the highest precedence in the language, so it
always gets evaluated first

• There are two versions of the operator: binary and unary

• The binary version is the one we used before:
point::print(), which is used to refer to a variable’s “class
scope” (also called “local scope”).

• The unary version is like this: ::count and is used to refer to a
variable’s “external scope” (e.g., for a global variable).

cis15-spring2010-parsons-lectII.1 14

• Here is a (maybe confusing) example from the book:

int count = 0; // declare global variable

void how_many(double w[], double x, int& count) {
for (int i=0; i<N; ++i) {
count += (w[i] == x); // local count

}
++::count; // global count

} // end of how_many()

• We need to use the unary scope operator her since count is
declared twice

• If you didn’t have the ::count, then the second time, the use of
count would also refer to the local variable

• It is better practise not to use global variables; or at least if you
do, give them unique names to avoid confusion :-)

cis15-spring2010-parsons-lectII.1 15

“this” pointer

• The keyword this is used to refer to an instance of a class from
within itself.

• It is a pointer— something we will discuss at length in the next
unit

• Here is a possible use to give you the idea.

• The data members are available anywhere inside any function
members:

point::foo(double a) {
if(x == a){

cout << y;
}

cis15-spring2010-parsons-lectII.1 16

• But what does x refer to in:

point::bar(double x) {
if(x == x){

cout << y;
}

• Turns out is is the x that is the argument to the function.

• To refer to the x that is the data member use this:

point::bar(double x) {
if(this->x == x){

cout << y;
}

• This last version of bar is the same as foo.

cis15-spring2010-parsons-lectII.1 17

Summary

• This lecture introduced the basics of object-oriented
programming.

• It showed how struct and class can be used to create
aggregate datatypes.

• We looked at creating objects, instances of classes.

• And we looked at attaching methods to classes.

• These are the main concepts you need for object-oriented
programming.

• Everything else is about making programs better (not more
functional).

cis15-spring2010-parsons-lectII.1 18

