
CLASS DESIGN

Today

• We will look in more detail at classes.

• The mian thing we will consider is limiting access to members of
classes.

• This work is based on Pohl, Chapter 4.

• As before, much of this work will be concerned not only with
what we can do in C++, but also the style in which we do it.

cis15-spring2010-parsons-lectII.2 2

Public and private access

• Members of classes and structs can be public or private

• publicmeans that any code can access the members

• private means that only code inside the class or struct can
access the members

– (or “friend” classes, to be discussed later in the semester)

• Typically, following good OOP practice, all data members are
private and only function members are public

– (but not all—only those that need to be accessed outside of
the struct or class).

cis15-spring2010-parsons-lectII.2 3

• For example:

class point {
public:

void print();
void set(double u, double v);

private:
double x, y;

}; // end of class--don’t forget semi-colon!

(the rest of the example code is the same as the previous one)

cis15-spring2010-parsons-lectII.2 4

• We could also write

struct point {
public:

void print();
void set(double u, double v);

private:
double x, y;

}; // end of struct--don’t forget semi-colon!

(again, the rest of the example code is the same as the previous
one)

cis15-spring2010-parsons-lectII.2 5

“class” vs “struct”

• The difference between structs and classes is:

– In a struct, the members are public by default

– In a class, the members are private by default

• So, we could write our example as:

cis15-spring2010-parsons-lectII.2 6

#include <iostream>
using namespace std;

class point {
// No private: is needed

double x, y;
public:

void print();
void set(double u, double v);

}; // end of struct--don’t forget semi-colon!

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {
x = u;
y = v;

} // end of set()

cis15-spring2010-parsons-lectII.2 7

• main looks the same as before:

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

} // end of main()

• In this example, x and y are private and the methods are public.

• Otherwise, class and struct are the same

• But by convention, C++ programmers tend to use class

cis15-spring2010-parsons-lectII.2 8

Nested classes

• Classes can be nested — one class is placed inside another.

• Here’s another confusing example from the book:

char c; // global scope

class X {
public:
char c; // local scope in class X
class Y {
public:
void foo(char e) { X t; ::c = t.c = c = e; }

private:
char c; // local scope in class Y

};
};

cis15-spring2010-parsons-lectII.2 9

• The scope of the first c is ::c.

• The scope of the second c is X::c.

• The scope of the third (last) c is X::Y::c

• The inner class, Y can only be referenced from within X.

• So, you can only create instances of Y within X, and you can only
access even the public the data members of Y from within X.

• If this sounds overly confusing, then don’t worry.

• You should be able to write all the programs you need without
using nested classes.

cis15-spring2010-parsons-lectII.2 10

“static” members

• The keyword static is used to refer to data members of a class
that are the same across all instances of the class.

• In other words, it is independent of any class variable

• For example in the following program, a.dimensions and
b.dimensions both have value 2.

cis15-spring2010-parsons-lectII.2 11

class point {
public:
static int dimensions;
.
.

};
.
.
int main() {

.

.
point::dimensions = 2; // initialize point
.
point a, b;
.

}

cis15-spring2010-parsons-lectII.2 12

“const” members and “mutable”
• Data members with the const keyword in their definition
cannot be modified.

• For example:

class point {
double x, y;
public:

const int dimensions = 2;
void print() const;

};

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

• dimensions cannot be modified.

cis15-spring2010-parsons-lectII.2 13

• Confusingly, you can use the same keyword const along with
function members.

• For example:

class point {
double x, y;
public:

const int dimensions = 2;
void print() const;

};

void point::print() const{
cout << "(" << x << "," << y << ")\n";

} // end of print()

• This says that print is not allowed to modify any of the data
members of point.

cis15-spring2010-parsons-lectII.2 14

• Without specifying a method as const, it is allowed to alter any
of the data members.

• Just to confuse the picture even further we have the keyword
mutable.

• If, in some class definition, we define:

mutable int delta;

it means that delta can be modified by anymethod for that
class, even if the method is defined as being const.

cis15-spring2010-parsons-lectII.2 15

Amore complex kind of class

• An example of another class is given in basic-stack.cpp.

• This implements a stack.

• A stack is a datastructure which can hold information in such a
way that the first thing placed into the stack is the last thing to be
removed from the stack.

• We think of a stack as allowing you to push information onto the
stack.

• You can also pop information off the stack.

cis15-spring2010-parsons-lectII.2 16

• Thus a stack is rather like a Pez dispenser:

• The example code will show you how to program this kind of
behavior.

• It will also give you an idea what a more complex class than
point looks like.

cis15-spring2010-parsons-lectII.2 17

Aside: why is stack useful?

• There are several reasons.

• First, it is the simplest example of a dynamic data-structure —
one where the memory that is uses is determined at run-time not
compile-time.

• You will meet many other kinds of dynamic data-structure in the
future, and understanding a stack will help you in
understanding those others.

• (Of course, the basic stack isn’t really dynamic, it is just a dressed
up array, but soon we’ll see how to make it really dynamic).

cis15-spring2010-parsons-lectII.2 18

• Second, a run-time stack system is a system of memory allocation
commonly used on most computers to keep track of how much
memory is available to a program and allocates pieces of it as
they are needed.

• When a function is called, the memory required for the function
(e.g., its local variables) is allocated from (pushed onto) the stack;
when the function exits, the memory is freed from (popped off) the
stack

• Thus stacks are fundamental to the way that all computer
programs work.

cis15-spring2010-parsons-lectII.2 19

Class design

• Data members should be private (“hidden”)

• Function members are often public (but not always—private
function members can be used for computations internal to a
class).

• Functions that do not modify data members should be const

• Pointers add indirection (we’ll talk about that later)

• A uniform set of functions should be included: set(), get(),
print()

cis15-spring2010-parsons-lectII.2 20

• UML (unified modeling language) provides a graphical method
for representing classes

point
dimension

x
y

print()
set()

inverse()

cis15-spring2010-parsons-lectII.2 21

Summary

• This lecture introduced the basics of object-oriented
programming.

• It showed how struct and class can be used to create
aggregate datatypes and the methods for those types.

• It discussed public and private methods, and how these should
be used in good class design.

• The lecture also looked at static, const and mutable, and
mentioned features such as class nesting, and the this pointer.

cis15-spring2010-parsons-lectII.2 22

