
CONSTRUCTORS AND DESTRUCTORS

Today

• Today we will look constructors and destructors.

• These are important additional concepts in handling classes and
objects.

• This material is taken from Pohl, Chapter 5, mainly 5.1–5.3 and
5.6.

cis15-spring2010-parsons-lectII.3 2

Constructors (ctors)

• An object is a class instance.

• House metaphor: the blueprint for the house is like a class; the
constructed house is like an object).

• The allocation of memory to create (instantiate) an object is
called construction; freeing memory (aka deallocation) when the
program is done using the object is called destruction.

• A ctor (constructor) is a member function used to allocate the
memory required by an object.

• A constructor always has the same name as the class it
constructs.

cis15-spring2010-parsons-lectII.3 3

• There are two ways to invoke the constructor.

• A constructor is invoked when:

– An object is declared.

– An object is created using the C++ keyword new.

• Constructors can take arguments.

• Constructors can be overloaded, that is given different
combinations of parameters.

– Compiler distinguishes based on signature.

• This means programmers can write their own versions, possibly
many different versions.

• Constructors do not have data types; they do not return values.

cis15-spring2010-parsons-lectII.3 4

ctor for “point”

• Here’s our old friend point .

class point {
private:

double x, y;
public:

// These are constructors
point() { x = 0; y = 0; }
point(double u) { x= u; y = 0; }
point(double u, double v) { x = u; y = v; }
// End of contructors
void print() const;
void set(double u, double v);

};

• You can find an example that is very much like this in
point-with-constructor.cpp .

cis15-spring2010-parsons-lectII.3 5

Constructor details

• All constructors have the same name as the class (point in this
case) and have no return type.

• The default constructor.

– The default constructor is the one that takes no arguments.

– If you don’t define one, the system creates the default.

– You can overload the default constructor with or without
arguments of your own.

• Constructor initializer.

– You can use a constructor to initialize class data members.

– This is the main reason for having constructors.

cis15-spring2010-parsons-lectII.3 6

• A constructor is called when you create an instance of a class.

• Given the definition above,

point p;

will create a point object, called p with its data members set to 0;

• Similarly the call:

point p(1);

will create a point object with its x value set to 1 and its y value
set to 0;

• while:

point p(3, 4);

will create a point object with its x value set to 3 and its y value
set to 4;

cis15-spring2010-parsons-lectII.3 7

• Constructors have a special syntax for initialising variables.

• For example, instead of:

point::point(double u) { x = u; }

you can use a constructor initializer like this:

point::point(double u) : x(u) { }

and instead of:

point::point(double u, double v) { x = u; y = v; }

you can use:

point::point(double u) : x(u), y(v) { }

• The syntax is as follows:

member-name (expression-list),member-name (expression-list)

where each member is initialized to the expression in parenthesis

cis15-spring2010-parsons-lectII.3 8

Conversion constructors

• Constructors can be used to convert data from one type to
another.

• For example (in program printChar.cpp) :

class pr_char {
private:

int c;
static const char * rep[5];

public:
pr_char(int i=0) : c(i % 5) { }
void print() const { cout << rep[c]; }

};

• The constructor here performs a conversion from integer to
pr_char .

cis15-spring2010-parsons-lectII.3 9

• The conversion constructor makes it possible to write:

for (int i=0; i<5; i++) {
c = i; // NOTE how this is done
c.print();

}

• Having conversion constructors isn’t necessarily good practice.

• It only works where the constructor is initializing one data
element.

• By default, any constructor with a single argument is assumed to
be a conversion constructor.

cis15-spring2010-parsons-lectII.3 10

• To control this, we use the keyword explicit .

• Placing this in front of a constructor definition tells the compiler
that is isn’t safe to allow the constructor to be used for
conversion:

explicit charStack(int size): max_len(size), top(EMPTY) {
s = new char[size];

}

• Example comes from stack-with-ctors.cpp .

• The class implements a fancier version of the stack from the last
lecture and uses pointers.

cis15-spring2010-parsons-lectII.3 11

Another constructor example

• Example from book:

class counter {
private:
int value; // 0 to 99
public:
counter(int i); // ctor declaration
void reset() { value = 0; }
int get() const { return value; }
void print() const { cout << value << ’\t’; }
void click() { value = (value+1) % 100; }
}
// constructor definition:
inline counter::counter(int i) { value = i % 100; }

cis15-spring2010-parsons-lectII.3 12

• This constructor sets the value of the variable i after doing some
manipulation of its value.

• inline is (another) new keyword.

• It means that the compiler can try to replace the function call by
the function body code; this avoids function call invokation and
can speed up program execution;

• inline isn’t required here, nor is it required by constructors in
general

cis15-spring2010-parsons-lectII.3 13

Copy constructors

• This is a somewhat complicated detail that has to do with what
happens when an object is used as a call-by-value argument to a
function.

• We mentioned briefly about the use of the run-time stack and
how memory is allocated and deallocated when functions are
called.

• When the arguments to functions are primitive data types (e.g.,
int), then this is easy.

• But when the arguments to functions are objects, what happens
locally inside the function? how is a “local copy” made for use
inside the function?.

• This is where a copy constructor is needed.

• A copy constructor says how to set the members of a copy.

cis15-spring2010-parsons-lectII.3 14

• For example, a copy constructor for point would be:

point::point(const point& pt){
x = pt.x;
y = pt.y;

}

• This says that to make a copy of point , you need to set the
variables x and y of the copy to have the values of the x and y .

• The thing being copied is the argument pt .

• The signature for a copy constructor of class myClass will
always be myClass(const myClass&)

• Now, this is a rather silly copy constructor, since C++ will make
a copy of point fine without a copy constructor.

• Copy constructors are typically needed when the objects being
copied have data members that are pointers.

cis15-spring2010-parsons-lectII.3 15

• A better (but more complicated) example is a copy constructor
for the class from the file stack-with-ctors.cpp .

• The copy constructor is:

charStack::charStack(const charStack& stk) {
top = stk.top;
FULL = stk.FULL;
length = stk.length;
stack = new char[stk.length];
memcpy(stack, stk.stack, length);

}

• Since copy constructors are only really needed when we have
classes with things like pointers in them, don’t worry about
them too much for now.

• They will make more sense when we have covered pointers.

cis15-spring2010-parsons-lectII.3 16

Destructors (dtor)

• A dtor (destructor) is a member function used to deallocate (free)
the object’s memory, after the object is no longer needed.

• Defined as the name of the class preceded by a tilde (∼)

• The default destructor will delete an object when the program
reaches the end of the scope of that object (block where it is
declared).

• You can write your own destructor to free up additional memory
used by the object.

• Typically you don’t need to do this until your objects are making
use of dynamic memory allocation which we won’t get to until next
lecture.

cis15-spring2010-parsons-lectII.3 17

• Example, free up the array used by the stack:

class charStack {

˜charStack() { delete []stack; }

}

• Again, this is in stack-with-ctors.cpp .

cis15-spring2010-parsons-lectII.3 18

• There are two ways to invoke the destructor:

– Program execution reaches the end of the block of code in
which the object was created.

– The object is deleted using the C++ keyword delete .

• Destructors cannot be overloaded

• Destructors cannot take arguments.

• Dtors do not have data types; they do not return values.

cis15-spring2010-parsons-lectII.3 19

Summary

• This lecture has looked at constructors and destructors.

• Constructors are used for initialisation and other operations that
must take place when an object is created.

• We learnt that a class can have many constructors, and that they
are distinguished form each other by their signature.

• A class may have a copy constructor and a conversion
constructor.

• A class only ever has one destructor. It frees up memory when
an object is destroyed.

cis15-spring2010-parsons-lectII.3 20

