
TOWARDS OBJECT ORIENTATION

Today

• Today we will at how we construct classes from other classes:

– Composition

– Derivation

• These are important ideas in object-oriented programming.

• We will also briefly cover polymorphism and overloading, and
mention friend classes.

• This material is taken from Pohl, Chapter 5, mainly 5.7 and 5.10.

cis15-spring2009-parsons-lectII.4 2

Composition and derivation

• Compsition and derivation are the cornerstones of
onject-oriented programming.

• Composition:

– Creating objects with other objects as members

• Derivation:

– Defining classes by expanding other classes

• We can see examples of both of these ideas in the program
coloredTriangle.cpp which you can get from the course
website.

cis15-spring2009-parsons-lectII.4 3

• Here’s the class triangle that we met in a lab:

class triangle {

private:
point a, b, c;

public:
triangle(){};
triangle(point, point, point);

void print() const;
void set(point, point, point);
point getA();
point getB();
point getC();

};

cis15-spring2009-parsons-lectII.4 4

• Here is the class coloredTriangle which adds an extra
attribute to triangle:

class coloredTriangle: public triangle {

private:
string color;

public:
coloredTriangle(point, point, point);

};

• Like “extends” in java.

cis15-spring2009-parsons-lectII.4 5

• “Base class” (triangle)

• “Derived class” (coloredTriangle)

• Derived class contains all the attributes of the base class.

• However, derived class can only access publicmembers of base
class

See coloredTriangle.cpp for an example.

• The word public in the declaration:

class coloredTriangle: public triangle {

controls what is accessible in the base class. We will look more at
this later in the semester.

cis15-spring2009-parsons-lectII.4 6

Here is another example

• Taken from the program robots.cpp which you can get from
the course website.

class roomba: public robot {
private:

string type;

public:
void setType(string s);
void vacuum(double x, double y);

};

cis15-spring2009-parsons-lectII.4 7

Polymorphism and overloading

• polymorphism—giving different meanings to the same function or
operator, i.e., “having many forms”. Lets us use different
implementations of a single class

• overloading—creating new versions of functions with the same or
different arguments

• When you overload a function, the name of the function is the
same, but what is does is different from the default

• Operators can also be overloaded

• signature matching is what the compiler uses when there are
multiple versions of a function (or operator) to determine which
version should be invoked

• Textbook goes into a LOT of detail about this—we’ll come back
to it more later in the semester.

cis15-spring2009-parsons-lectII.4 8

Friend classes

• Allows two or more classes to share private members and
functions

– e.g., container and iterator classes

• Friendship is not transitive.

• Since friendship violates the usual rules about hiding members,
you need to use it with care.

• In fact you should try not to use friend.

– When writing code from scratch you should be able to avoid
it.

– It tends to be used when quickly patching code.

cis15-spring2009-parsons-lectII.4 9

cis15-spring2009-parsons-lectII.4 10

class tweedledee {
...

friend class tweedledum;

int cheshire();
...
};

• This allows any instance of tweedledum to access any member
of any instance of tweedledee.

• However no instance of tweedledee can access any private
member of tweedledum.

cis15-spring2009-parsons-lectII.4 11

Friend functions

• Friendship can also be at the individual function level.

• A non-member friend function can have access to the private
components in a class.

• Extending the previous example:

void alice() {
...
}

class tweedledum {
...

friend void alice() // prototypes for friend functions
friend int tweedledee::cheshire ();

...
};

cis15-spring2009-parsons-lectII.4 12

cis15-spring2009-parsons-lectII.4 13

• This allows alice and cheshire to access the data in instances
of tweedledum.

• For concrete example see the program robots.cpp

• If this example seems contrived, that’s because it is :-)

• friend is like that — unless you really need it, it seems rather
superfluous.

cis15-spring2009-parsons-lectII.4 14

Derivation and friendship

• Friendship is not the same as derivation!

• Example:

– b2 is a friend of b1

– d1 is derived from b1

– d2 is derived from b2

• In this case:

– b2 has special access to private members of b1, as a friend

– But d2 does not inherit this special access

– Nor does b2 get special access to d1 (derived from friend b1)

• arrays.cpp gives a more interesting example than
robots.cpp, but you need to be comfortable with pointers.

• We’ll talk about derivation more later in the course.

cis15-spring2009-parsons-lectII.4 15

Summary

• This lecture has looked at:

– Composition and derivation

– Polymorphism, overloading

– Friends

• For most of these topics, it has been a first look; we will come
back to them over and over again through the semester.

cis15-spring2009-parsons-lectII.4 16

