
DYNAMIC MEMORY

Today

• Today we will start to look at pointers

• The reason for doing this is that we want to be able to use
dynamic memory.

• The idea is that rather than declaring how much memory we
will need at compile time, we can say at run time.

• This material is kind of covered in Chapter 3 by Pohl.

• All the examples in these notes are on the class website.

cis15-spring2010-parsons-lectIII.1 2

Overview of pointers

• By now you should be happy with the following (see
pointers.cpp):

int a; // declare an integer
int b[10]; // declare an array of 10 ints

• New today is the idea that you can declare:

int *aptr; // declare a pointer to an int

can also be written:

int* aptr;

the whitespace makes no difference.

• A pointer contains the address of an element

• Allows one to access the element “indirectly”

cis15-spring2010-parsons-lectIII.1 3

• What can we do with pointers?

• Two new operations & and *.

• & is a unary operator that gives address of its argument

aptr = &a

• The pointer now contains the address of a.

• When we want awe use *.

cis15-spring2010-parsons-lectIII.1 4

• * is a unary operator that fetches contents of its argument (i.e.,
its argument is an address)

• We call this dereferencing the pointer.

• Whatever we do to aptr we do to a, so

*aptr = 6;

sets the value of a to 6.

• Since *aptr is an integer, we can do any integer thing to it:

*aptr = *aptr + 1;

• Note that & and * bind more tightly than arithmetic operators.

cis15-spring2010-parsons-lectIII.1 5

Pointers and memory

• What we covered so far tells us how to use pointers.

• Now let’s think about what actually happens.

• Pointers are variables that contain memory addresses as their
values

• Other data types we’ve learned about use direct addressing

• Pointers facilitate indirect addressing

cis15-spring2010-parsons-lectIII.1 6

• Declaring pointers:

– Pointers indirectly address memory where data of the types
we’ve already discussed is stored (e.g., int, char, float,
etc.—even classes)

– Declaration uses asterisks (*) to indicate a pointer to a
memory location storing a particular data type

• Example:

int *count;
float *avg;

cis15-spring2010-parsons-lectIII.1 7

• Ampersand & is used to get the address of a variable

• Example:

int count = 12;
int *countPtr = &count;

• &count returns the address of count and stores it in the pointer
variable countPtr

cis15-spring2010-parsons-lectIII.1 8

• What happens is something like this:

countPtr

count 12 bffff874
bffff874

• Which we usually draw like this:

countPtr

count 12 bffff874

• When we write

*countPtr

we are saying “go to the address in countPtr”.

cis15-spring2010-parsons-lectIII.1 9

Dynamic memory allocation

• One of the main reasons we need pointers is to support dynamic
memory allocation.

• In C++, there are two functions that handle dynamic memory
allocation: new and delete

• For example:

int *p, *q, *r;
p = new int(5); // allocation and initialization
q = new int[10]; // allocation, but uninitialized
r = new int; // allocation, but uninitialized

• Some compilers initialize values to 0 by default, but not all—that
is not part of the language specification, so don’t rely on it!

cis15-spring2010-parsons-lectIII.1 10

• More abstractly he syntax for new is:

new type-name

new type-name initializer

new type-name[expression]

• The point of dynamic memory allocation is to allow your
program to decide, while running, how much data it needs to
store.

• You can, therefore, tailor the size of an array to the problem you
are trying to solve.

cis15-spring2010-parsons-lectIII.1 11

• Here’s an example (modified from the book, p139).

#include <iostream>
using namespace std;

int main() {
int *data;
int size;

cout << "enter array size: ";
cin >> size;

data = new int[size]; // allocate array of ints

for (int j=0; j<size; j++) {
cout << (data[j]=j) << ’\t’;

}
cout << endl;

} // end of main()

cis15-spring2010-parsons-lectIII.1 12

• We declare data as a pointer to the kind of data we want to store
in the array.

• new returns an address — the address of the first element of the
array.

• After we assign this to data, we use data as the name of the
array.

• Note that we declare the size of the array while the program is
running.

• (Just don’t try to declare the array before you set the value that
determines the size.)

cis15-spring2010-parsons-lectIII.1 13

• The syntax for delete is:

delete expression

delete [] expression

• The first form is for non-arrays; the second form is for arrays

• We use delete to make sure our programs don’t have memory
leaks. where we declare memory and don’t “give it back” when
we are done with it.

• The next slide gives the example from before with a delete.

• Other examples of the use of new and delete can be found in
the two stack handling programs stack-with-ctors.cpp
(from Unit II) and dynamic-stack.cpp.

cis15-spring2010-parsons-lectIII.1 14

#include <iostream>
using namespace std;

int main() {
int *data;
int size;

cout << "enter array size: ";
cin >> size;

data = new int[size]; // allocate array of ints

for (int j=0; j<size; j++) {
cout << (data[j]=j) << ’\t’;

}
cout << endl;

delete [] data;

} // end of main()

cis15-spring2010-parsons-lectIII.1 15

• In general, pointers go well with dynamic memory allocation.

• If you don’t know how often you will call new, then you can’t
specify the size of an array, and you can’t give every new piece
of allocated memory a name.

• But you can have a pointer that knows its location in memory.

int *pToInt;

pToInt = new int;

• To keep track of lots of dynamically allocated memory, we often
created linked datastructures, like that in dynamic-stack.cpp.

• Other structures like this are covered in CIS 22 Datastructures.

cis15-spring2010-parsons-lectIII.1 16

Arrays of objects

• You can create arrays of objects (see arrayso.cpp):

#include <iostream>
using namespace std;

class point {
private:

int x, y;
public:

point() { }
point(int x0, int y0) : x(x0), y(y0) { }
void set(int x0, int y0) { x = x0; y = y0; }
void print() const {

cout << "(" << x << "," << y << ") "; }
};

cis15-spring2010-parsons-lectIII.1 17

• Each element of the array is an object, and is handled in the
usual way.

int main() {
point triangle[3];
triangle[0].set(0,0);
triangle[1].set(0,3);
triangle[2].set(3,0);
cout << "here is the triangle: ";
for (int i=0; i<3; i++) {
triangle[i].print();

}
cout << endl;

}

cis15-spring2010-parsons-lectIII.1 18

Pointers to objects

• You can also create pointers to objects just as you create pointers
to primitive data types

• In the example below, we demonstrate more dynamic memory
allocation.

• We declare a pointer to an array and then LATER declare the
memory for the array using the new function.

cis15-spring2010-parsons-lectIII.1 19

• Assuming the same definition of point as before.

int main() {
point *triagain = new point[3];

triagain[0].set(0,0);
triagain[1].set(0,3);
triagain[2].set(3,0);
cout << "tri-ing again: ";
for (int i=0; i<3; i++) {
triagain[i].print();

}
cout << endl;
delete[] triagain;

}

cis15-spring2010-parsons-lectIII.1 20

• You can use pointers to objects in simpler ways also (see
pointers.cpp):

point p;
point* pptr;

pptr = &p;

• Having set the pointer to point to the object, we can access the
members of the object.

• We can do this by dereferencing the pointer:

(*pptr).set(1.2,3.4);

• We can also do this using the special operator ->:

pptr->print();

cis15-spring2010-parsons-lectIII.1 21

Summary

• This lecture looked at pointers.

• We saw how to use pointers.

• We also talked about what pointers do, how they handle
memory.

• The reason for talking about pointers is to be able to handle
dynamic memory, and we talked about that.

• We also looked at arrays of objects, and pointers to objects.

cis15-spring2010-parsons-lectIII.1 22

