
POINTERS AND ARRAYS

Today

• Today we continue with pointers.

• In particular we look at the relationship between pointers and
arrays.

• Again this material is kind of covered in Chapter 3 by Pohl.

• Most of the examples in these notes are on the class website.

cis15-spring2010-parsons-lectIII.2 2

Arrays review

• A string is an array of characters

• An array is a “regular grouping or ordering”

• A data structure consisting of related elements of the same data
type

• Arrays need:

– Data type

– Name

– Length

cis15-spring2010-parsons-lectIII.2 3

• Length can be determined:

– statically — at compile time.

char str1[10];

– dynamically — at run time

char *str2;
str2 = new char [10];

cis15-spring2010-parsons-lectIII.2 4

Arrays and memory

• Defining a variable is called “allocating memory” to store that
variable

• Defining an array means allocating memory for a group of bytes,
i.e., assigning a label to the first byte in the group

• Individual array elements are indexed

– Starting with 0

– Ending with length − 1

• Indices follow array name, enclosed in square brackets ([])
e.g., arr[25]

cis15-spring2010-parsons-lectIII.2 5

Character array example

// example: arrays0c.cpp

#include <iostream>
using namespace std;

const int MAX = 6;

int main(void) {
char str[MAX] = "ABCDE";
int i;
for (i=0; i<MAX-1; i++) {
cout << str[i] << " ";

}
cout << endl;

} /* end of main() */

cis15-spring2010-parsons-lectIII.2 6

Integer array example

// example: arrays0i.cpp

#include <iostream>
using namespace std;

const int MAX = 6;

int main() {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
int i;
for (i=0; i<MAX; i++) {
cout << arr[i] << " ";

}
cout << endl;

} /* end of main() */

cis15-spring2010-parsons-lectIII.2 7

• Now we will go back and recall some things about pointers.

• Consider this:

int i = 3, j = -99;
int count = 12;
int *countPtr = &count;

• Here’s what the memory looks like:

variable name memory location value

count 0xbffff4f0 12
i 0xbffff4f4 3
j 0xbffff4f8 -99
...
countPtr 0xbffff600 0xbffff4f0
...

• The next slides give some more complex examples.

cis15-spring2010-parsons-lectIII.2 8

#include <iostream> // pointers1.cpp
using namespace std;

int main() {

int x, y; // declare two ints
int *px; // declare a pointer to an int

x = 3; // initialize x

px = &x; // set px to the value of the address of x;
// i.e., to point to x

y = *px; // set y to the value stored at the address
// pointed to by px; that is the value of x

cout << "x=" << x << " px=" << px << " y=" << y << endl;

cis15-spring2010-parsons-lectIII.2 9

x++; // increment x

cout << "x=" << x << " px=" << px << " y=" << y << endl;

(*px)++; // increment the value stored at the address
// pointed to by px

cout << "x=" << x << " px=" << px << " y=" << y << endl;

*px++; // take away the parens

cout << "x=" << x << " px=" << px << " y=" << y << endl;

// since px has changed, what does it point to now?

cout << "*px= " << *px << endl;

}

cis15-spring2010-parsons-lectIII.2 10

• The output is...

x=3 px=0xbffff874 y=3
x=4 px=0xbffff874 y=3
x=5 px=0xbffff874 y=3
x=5 px=0xbffff878 y=3

*px=3

cis15-spring2010-parsons-lectIII.2 11

• Here’s a picture of what’s going on:

step 3:

3 3x =

px

y =

this is the initial situation:
 x is initialized to the value 3
 px is initialized to point to x
 y is initialized to the value pointed to by x

step 0:

4 3x =

px

y =

here is the situation after incrementing xstep 1:

5 3x =

px

y =

here is the situation after incrementing (*px),
i.e., the value that px points to, in other words, x

step 2:

3 3

px

x = y =

here is the situation after incrementing px
i.e., the POINTER increments, in other words,
it moves to point to the next contiguous item in
memory, in this case, y

cis15-spring2010-parsons-lectIII.2 12

Pointer arithmetic

• Incrementing pointers moves the pointer through memory.

• Increasing a pointers’ value by 1 increases the address it contains
by some multiple of 1.

• The number of bytes in that kind of data.

• In the example above, it is a bit of a party trick — flashy but with
no obvious purpose.

• But it does have a serious use.

• Pointer arithmetic is meaningful with arrays:

cis15-spring2010-parsons-lectIII.2 13

• Imagine we have:

int A[10];
int* pA;

• If we do

pA = &A[0];

then *(pA + 1) points to A[1]

• We can use pointer arithmetic to access different elements of an
array.

cis15-spring2010-parsons-lectIII.2 14

// pointers0.cpp

#include <iostream>
using namespace std;

int main() {

int i, *j, arr[5];

for (i=0; i<5; i++) {
arr[i] = i;

}

cout << "arr=" << arr << endl;
cout << endl;

cis15-spring2010-parsons-lectIII.2 15

for (i=0; i<5; i++) {
cout << "i=" << i << " arr[i]=" << arr[i];
cout << " &arr[i]=" << &arr[i] << endl;

}

cout << endl;

j = &arr[0];
cout << "j=" << j;
cout << " *j=" << *j;
cout << endl << endl;;

j++;
cout << "after adding 1 to j: j=" << j;
cout << " *j=" << *j << endl;

}

cis15-spring2010-parsons-lectIII.2 16

• The output is:

arr=0xbffff864

i=0 arr[i]=0 &arr[i]=0xbffff864
i=1 arr[i]=1 &arr[i]=0xbffff868
i=2 arr[i]=2 &arr[i]=0xbffff86c
i=3 arr[i]=3 &arr[i]=0xbffff870
i=4 arr[i]=4 &arr[i]=0xbffff874

j=0xbffff864 *j=0

after adding 1 to j: j=0xbffff868 *j=1

• NOTE that the absolute pointer values can change each time you
run the program!

• BUT the relative values will stay the same.

cis15-spring2010-parsons-lectIII.2 17

• Remember the difference between (*j) + 1 and *(j + 1)

• Note that an array name is a pointer, so we can also do *(arr +
1) and in general:

– *(arr + i) == arr[i] and so arr + i == &arr[i]

• The difference:

– An array name is a constant, and a pointer is not.

– So we can do: j = arr and j++ but we can NOT do: arr =
j or arr++

• When an array name is passed to a function, what is really
passed is a pointer to the array.

cis15-spring2010-parsons-lectIII.2 18

Generic pointers

• Last class, we talked about pointers to specific data types, e.g.,:

int *pToInt, *pToInt2;
char *pToChar;

• You can also have a pointer to a void:

void *pToVoid;

• Clearly this is not a pointer *to* anything (what is a void?).

• A “pointer to a void” is a generic pointer.

• You can use it to point to different kinds of object.

• When you dereference the pointer, it is like converting it to that
data type

cis15-spring2010-parsons-lectIII.2 19

• Below are all legal statements, given the definitions above:

pToVoid = pToInt;
pToInt2 = reinterpret_cast<int*>(pToVoid);
pToChar = &C;
pToVoid = pToChar;
pToVoid = &A;

But you can’t do this:

pToInt2 = pToVoid;

• See generic-pointer.cpp

• You can use a generic pointer, for example, as an argument to a
function to which you might need to pass different kinds of
object.

cis15-spring2010-parsons-lectIII.2 20

Summary

• This lecture recapped pointers and arrays.

• But the main topics of the lecture were:

– Pointer arithmetic; and

– The relationship between pointers and arrays.

• (These are basically the same topic).

• We also covered generic pointers.

cis15-spring2010-parsons-lectIII.2 21

