POINTERS AND ARRAYS

Today

® Today we continue with pointers.

e In particular we look at the relationship between pointers and
arrays.

® Again this material is kind of covered in Chapter 3 by Pohl.

® Most of the examples in these notes are on the class website.

cis15-spring2010-parsons-lectIIl.2

Arrays review

® A string is an array of characters
® An array is a “regular grouping or ordering”

® A data structure consisting of related elements of the same data
type
® Arrays need:
— Data type
— Name
— Length

cis15-spring2010-parsons-lectIIl.2

® Length can be determined:

— statically — at compile time.
char str1[10];
— dynamically — at run time

char =*str?2;
str2 = new char [10];

cis15-spring2010-parsons-lectlIl.2

Arrays and memory

® Defining a variable is called “allocating memory” to store that
variable

® Defining an array means allocating memory for a group of bytes,
i.e., assigning a label to the first byte in the group

e Individual array elements are indexed
— Starting with 0
— Ending with length — 1

* Indices follow array name, enclosed in square brackets ([])
e.g.,arr[25]

cis15-spring2010-parsons-lectlIl.2 5

Character array example

/| exanpl e: arraysOc. cpp

#i ncl ude <i ostreane
usi ng nanespace std;

const I nt MAX = 6;

Int main(void) {
char str[MAX] = " ABCDE";
Int 1;
for (1=0; Ii<MAX-1; i++) {
cout << strf[i] << " ";
}
cout << endl;
} I+ end of main() =*/

cis15-spring2010-parsons-lectlIl.2

Integer array example

/| exanple: arraysOi.cpp

#i ncl ude <i ostreane
usi ng nanespace std;

const I nt MAX = 6;

Int main() {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
Int 1 ;
for (1=0; i<MAX; 1++) {
cout << arrf[i] << " ";
}
cout << endl:
} /' end of main() =/

cis15-spring2010-parsons-lectlIl.2

* Now we will go back and recall some things about pointers.
® Consider this:

int i =3, | = -99;
| nt count = 12;
I nt »countPtr = &count;

® Here’s what the memory looks like:

variable name | memory location value
count Oxbffff4£0 12
i Oxbftff4f4 3
] Oxbffff4£8 -99
count Ptr Oxbftff600 | Oxbftff4£0

® The next slides give some more complex examples.

cis15-spring2010-parsons-lectlIl.2

#i ncl ude <i ostreanp
usi ng nanespace std

int main() {

Int X, Vy; /]
| Nt *pXx; [/
X = 3; [/
pxX = &X; [l

/[l
y = *pX; [/

/]

cout << "x=" << X

cis15-spring2010-parsons-lectlIl.2

/] pointersl.cpp

declare two ints
declare a pointer to an int

initialize x

set px to the value of the address of x;
l.e., to point to x

set y to the value stored at the address
pointed to by px; that is the value of x

<< " px=" << px << " y=" <<y << endl;

X++; /] 1 ncrenent X

cout << "x=" << x << " px=" <<
(*px) ++; [l i1ncrenent the

/1l pointed to by
cout << "x=" << x << " px=" <<
* pX++; /] take away the
cout << "x=" << x << " px=" <<

px << " y=" <<y << endl;

val ue stored at the address
pX

pX << " y=" <<y << endl;
par ens

px << " y=" <<y << endl;

/'l since px has changed, what does it point to now?

cout <<

cis15-spring2010-parsons-lectlIl.2

*px= " << xpx << endl;

10

® The output is...

Xx=3 px=0xbffff874 vy
Xx=4 px=0xbffff874 vy
X=5 px=0xbffff874 vy
X=5 px=0xbffff878 y
* PX=3

3
3
3
3

cis15-spring2010-parsons-lectlIl.2

11

® Here's a picture of what’s going on:

step O: pX thisistheinitial situation:
xisinitialized to the value 3
pxisinitialized to point to x
X=13 y=|3 yisinitialized to the value pointed to by x

step 1: pX here isthe situation after incrementing x

step 2: pX here isthe situation after incrementing (* px),
i.e., the value that px points to, in other words, x

step 3: px here is the situation after incrementing px
Y% i.e., the POINTER increments, in other words,
it moves to point to the next contiguousitemin
Xx= 13 y=13 memory, in this case, y

cis15-spring2010-parsons-lectIlII.2 12

Pointer arithmetic

® Incrementing pointers moves the pointer through memory.

® Increasing a pointers’ value by 1 increases the address it contains

by some multiple of 1.

® The number of bytes in that kind of data.

* In the example above, it is a bit of a party trick — flashy but with

no obvious purpose.
e But it does have a serious use.

e Pointer arithmetic is meaningful with arrays:

cis15-spring2010-parsons-lectlIl.2

13

® Imagine we have:

i nt Al 10];
| nt* pA,

e If we do
PA = &A[O] ;
then ~(pA + 1) points to Al 1]

® We can use pointer arithmetic to access different elements of an
array.

cis15-spring2010-parsons-lectlIl.2

14

/| pointersO0.cpp

#i ncl ude <i ostreanp
usi ng nanespace std;

int main() {
int i, %], arr[5];
for (1=0; i<5; i++) {

arr[i] =1;

}

cout << "arr=" << arr << endl:
cout << endl;

cis15-spring2010-parsons-lectlIl.2

15

for (1=0; i<5;, i1++) {
cout << "i=" << << " arr[i]=" << arr[i];
cout << " &arr[i]=" << &arr[i] << endl;

}

cout << endl;

j = &arr[O0];
cout << "j=" << j;
cout << " *j=" << *j;

cout << endl << endl::

] ++;
cout << "after adding 1 to j: j=" << j;
cout << " *j=" << xj << endl;

cis15-spring2010-parsons-lectlIl.2

® The output is:

arr=0xbffff 864

| =0 arr][i
1 arr[i]
2 arr[i]=
| =3 arr[i]
4 arr[i

j =Oxbf f f f 864

after addi ng

garr |
garr |
garr |
g&arr |
garr |

*j =0

1 to j:

] =Oxbf f f f 864
] =0xbf f f f 868
] =0xbf f f f 86¢
] =0xbf f f f 870
] =Oxbf f f f 874

j =Oxbf fff868 *j =1

e NOTE that the absolute pointer values can change each time you

run the program!

e BUT the relative values will stay the same.

cis15-spring2010-parsons-lectlIl.2

17

e Remember the difference between (*j) + land=*(] + 1)

® Note that an array name is a pointer, so we can alsodo *(arr +
1) and in general:

—+«(arr + i) == arr[i] andsoarr + i == &arr[i]
e The difference:

— An array name is a constant, and a pointer is not.

—Sowecando:] = arr andj ++ butwecan NOT do: arr =
j orarr++

® When an array name is passed to a function, what is really
passed is a pointer to the array.

cis15-spring2010-parsons-lectlIl.2 18

Generic pointers

e Last class, we talked about pointers to specific data types, e.g.,:

Int *=pTolnt, =*pTolnt2;
char *pToChar;

® You can also have a pointer to a voi d:

voi d *pToVoi d;
® Clearly this is not a pointer *to* anything (what is a voi d?).
* A “pointer to a voi d” is a generic pointer.

® You can use it to point to different kinds of object.

e When you dereference the pointer, it is like converting it to that
data type

cis15-spring2010-parsons-lectlIl.2 19

® Below are all legal statements, given the definitions above:

pToVoi d = pTol nt;
pTolnt2 = reinterpret _cast<int*x>(pToVoi d);
pToChar = &C,
pToVoi d = pToChar;
pToVoi d = &A,
But you can’t do this:

pTolnt2 = pToVoi d;

® See generi c- poi nter.cpp

® You can use a generic pointer, for example, as an argument to a
function to which you might need to pass different kinds of
object.

cis15-spring2010-parsons-lectlIl.2

20

Summary

® This lecture recapped pointers and arrays.
® But the main topics of the lecture were:

— Pointer arithmetic; and

— The relationship between pointers and arrays.

® (These are basically the same topic).

® We also covered generic pointers.

cis15-spring2010-parsons-lectlIl.2

21

