
CALL BY REFERENCE

Today

• Today we continue with topics related to pointers.

• In particular we look at passing parameters to functions and
how and why we do call by reference.

• Again this material is kind of covered in Chapter 3 by Pohl.

• Most of the examples in these notes are on the class website.

cis15-spring2010-parsons-lectIII.3 2

Pointers and references

• Pointers (same as in C):

– int *pmeans “pointer to int”

– p = &imeans p gets the address of object i

• References (not in C):

– They are basically aliases— alternative names — for the
values stored at the indicated memory locations.

int n;
int &nn = n;
double arr[10];
double &last = arr[9];

cis15-spring2010-parsons-lectIII.3 3

• Pointers are variables with names and addresses in memory.

• References are just alternative names for the object they are
defined for.

• The difference between them is shown by refs.cpp on the class
website.

• The main reason for the existence of references is so that we have
a neater way to do call-by-reference.

cis15-spring2010-parsons-lectIII.3 4

Functions: parameters and arguments

• Function header declaration:

type name (parameters);

• Function definition:

type name (parameters) {
statements

}

• Function invocation:

name (arguments);

or

variable_of_type = name (arguments):

• Functions have to be declared before they can be called

cis15-spring2010-parsons-lectIII.3 5

• The book uses the word “parameters” when a function is
declared and “arguments” when a function is invoked (or
“called”)

• When a function is called, the program control shifts from
wherever the function call originates to the body of the function

• The function arguments get initialized as local variables within
the function.

• Now, parameters can be either:

– call by value or

– call by reference

cis15-spring2010-parsons-lectIII.3 6

Call by value

• With call by value, the value of each argument is copied to a local
variable within the function

• When the function ends, the program control returns to
wherever the function was called from, and the memory
allocated within the function returns to the program’s memory
stack

• Even if the values of the local arguments within the function
changed during the execution of the function, the values that
were used to invoke the function do not change

cis15-spring2010-parsons-lectIII.3 7

• Example:

#include <iostream>
using namespace std;

void myfun(int a) {
a++;
cout << "inside myfun, a=" << a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun(a);
cout << "after calling myfun, a=" << a << endl;

} // end of main()

cis15-spring2010-parsons-lectIII.3 8

• The output is:

before calling myfun, a=7
inside myfun, a=8
after calling myfun, a=7

cis15-spring2010-parsons-lectIII.3 9

Call by reference

• With call by reference, the address of each argument is copied to a
local variable within the function

• When the function ends, the program control returns to
wherever the function was called from, and the memory
allocated within the function returns to the program’s memory
stack

• Because the local arguments are addresses, any changes that
were made to the values stored at these address locations during
the execution of the function are retainedwhen the function ends

• in C++, there are two ways to implement call by reference:

– using pointers; and

– using references.

cis15-spring2010-parsons-lectIII.3 10

• Example of call by reference using pointers:

#include <iostream>
using namespace std;

void myfun(int *a) {
(*a)++;
cout << "inside myfun, *a=" << *a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun(&a);
cout << "after calling myfun, a=" << a << endl;

}

cis15-spring2010-parsons-lectIII.3 11

• And the output is:

before calling myfun, a=7
inside myfun, *a=8
after calling myfun, a=8

• Thus pointers give us one way of “reaching” things outside
functions.

cis15-spring2010-parsons-lectIII.3 12

• Example of call by reference using references:

#include <iostream>
using namespace std;

void myfun(int &a) {
a++;
cout << "inside myfun, a=" << a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun(a);
cout << "after calling myfun, a=" << a << endl;

}

cis15-spring2010-parsons-lectIII.3 13

Why use call-by-reference?

• We use call-by-reference for efficiency.

• Call-by-value requires the computer to copy the parameters
before passing them to the function.

• This is fine if the parameters are a few chars or doubles.

• But in C++ we might call a function on a complex object that
holds many many bytes of data.

• It is far more efficient, in both memory and time, to pass a
pointer or a reference to such an object than to copy it.

• However, you have to be very careful when you do this
otherwise you may get odd things happening to your program.

cis15-spring2010-parsons-lectIII.3 14

Copy constructors

• If you do decide to pass a complex object by call-by-value, you
need to define a copy constructor for it.

• The problem is that C++ on its doesn’t know how to copy
complex objects.

• So you have to describe exactly how to make a copy.

• Here’s a copy constructor for the point object:

point::point(const point& p) {
x = p.x;
y = p.y;

}

• (point is not complex enough to require a copy constructor, but
it make s a good example since we know it so well by now).

cis15-spring2010-parsons-lectIII.3 15

• C++ knows this is a copy constructor by the signature.

• There is no return type (just like a constructor).

• The only argument is a reference to an object of the same class as
the constructor is defined for.

• The p that is the argument of the copy constructor is the object
being copied.

• What the copy constructor has to do is to say how to set the
value of every attribute of the object.

• In the example from point, we are saying that to make a copy
of p copy the attribute p.x into the attribute x of the copy, and
similarly for y.

cis15-spring2010-parsons-lectIII.3 16

• Using a copy constructor we get a deep copy of the original object.

• This is in contrast to the shallow copy that we get if we don’t
define a copy constructor.

• Roughly speaking, if an object includes a pointer, we need to
make a deep copy of the object.

• For a more complex example of a copy constructor, see the
example program dynamic-stack.cpp.

cis15-spring2010-parsons-lectIII.3 17

Passing arrays to functions

• Given the following example:

int sum(int A[], int n)
{

int s=0;

for (int i=0; i<n; i++)
s += A[i];

return(s);
} // end of sum()

• When the array A is passed to the function sum(), it is passed
using call-by-value on its base address (i.e., the address of A[0]

• However, passing an address call-by-value is the same as
passing the thing that is addressed call-by-reference.

cis15-spring2010-parsons-lectIII.3 18

• Thus within the context of a function header definition, the
following two statements are equivalent:

int sum(int A[], ...) { ... }

and

int sum(int *A, ...) { ... }

but not in other contexts!

• This explains the function headers you see in some of the C++
libraries.

cis15-spring2010-parsons-lectIII.3 19

• And the output is:

before calling myfun, a=7
inside myfun, a=8
after calling myfun, a=8

cis15-spring2010-parsons-lectIII.3 20

Namespaces

• You have already been using namespaces as in:

#include <iostream>
using namespace std;

• The std namespace is the standard C/C++ namespace that
comes with the language

• A namespace is a way of grouping classes to avoid name conflict

• That is, you could have two things with the same name, but in
different name spaces, and then there would be no conflict

cis15-spring2010-parsons-lectIII.3 21

• Declaration of classes within a namespace looks like this:

namespace myspace {

class myclass1 { ... };

class myclass2 { ... };

} \\ end of namespace

• Note that when you define a namespace in a header file, you do
not need to use the .h in the include statement:

#include <iostream>
using namespace std;

versus

#include <time.h>

• The first include statement is part of a namespace; the second is
not

cis15-spring2010-parsons-lectIII.3 22

Summary

• This lecture was mainly concerned with call by reference.

– We recalled call-by-value.

– We looked at call-by-reference using pointers.

– We intrduced references; and

– We looked at call-by-reference using references

• We also looked briefly at namespaces and passing arrays to
functions.

cis15-spring2010-parsons-lectIII.3 23

