
CALL BY REFERENCE



Today

• Today we continue with topics related to pointers.

• In particular we look at passing parameters to functions and
how and why we do call by reference.

• Again this material is kind of covered in Chapter 3 by Pohl.

• Most of the examples in these notes are on the class website.
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Pointers and references

• Pointers (same as in C):

– int *pmeans “pointer to int”

– p = &imeans p gets the address of object i

• References (not in C):

– They are basically aliases— alternative names — for the
values stored at the indicated memory locations.

int n;
int &nn = n;
double arr[10];
double &last = arr[9];
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• Pointers are variables with names and addresses in memory.

• References are just alternative names for the object they are
defined for.

• The difference between them is shown by refs.cpp on the class
website.

• The main reason for the existence of references is so that we have
a neater way to do call-by-reference.
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Functions: parameters and arguments

• Function header declaration:

type name ( parameters );

• Function definition:

type name ( parameters ) {
statements

}

• Function invocation:

name ( arguments );

or

variable_of_type = name ( arguments ):

• Functions have to be declared before they can be called
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• The book uses the word “parameters” when a function is
declared and “arguments” when a function is invoked (or
“called”)

• When a function is called, the program control shifts from
wherever the function call originates to the body of the function

• The function arguments get initialized as local variables within
the function.

• Now, parameters can be either:

– call by value or

– call by reference
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Call by value

• With call by value, the value of each argument is copied to a local
variable within the function

• When the function ends, the program control returns to
wherever the function was called from, and the memory
allocated within the function returns to the program’s memory
stack

• Even if the values of the local arguments within the function
changed during the execution of the function, the values that
were used to invoke the function do not change
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• Example:

#include <iostream>
using namespace std;

void myfun( int a ) {
a++;
cout << "inside myfun, a=" << a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun( a );
cout << "after calling myfun, a=" << a << endl;

} // end of main()
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• The output is:

before calling myfun, a=7
inside myfun, a=8
after calling myfun, a=7
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Call by reference

• With call by reference, the address of each argument is copied to a
local variable within the function

• When the function ends, the program control returns to
wherever the function was called from, and the memory
allocated within the function returns to the program’s memory
stack

• Because the local arguments are addresses, any changes that
were made to the values stored at these address locations during
the execution of the function are retainedwhen the function ends

• in C++, there are two ways to implement call by reference:

– using pointers; and

– using references.
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• Example of call by reference using pointers:

#include <iostream>
using namespace std;

void myfun( int *a ) {
(*a)++;
cout << "inside myfun, *a=" << *a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun( &a );
cout << "after calling myfun, a=" << a << endl;

}
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• And the output is:

before calling myfun, a=7
inside myfun, *a=8
after calling myfun, a=8

• Thus pointers give us one way of “reaching” things outside
functions.
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• Example of call by reference using references:

#include <iostream>
using namespace std;

void myfun( int &a ) {
a++;
cout << "inside myfun, a=" << a << endl;

} // end of myfun()

int main() {
int a = 7;
cout << "before calling myfun, a=" << a << endl;
myfun( a );
cout << "after calling myfun, a=" << a << endl;

}
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Why use call-by-reference?

• We use call-by-reference for efficiency.

• Call-by-value requires the computer to copy the parameters
before passing them to the function.

• This is fine if the parameters are a few chars or doubles.

• But in C++ we might call a function on a complex object that
holds many many bytes of data.

• It is far more efficient, in both memory and time, to pass a
pointer or a reference to such an object than to copy it.

• However, you have to be very careful when you do this
otherwise you may get odd things happening to your program.
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Copy constructors

• If you do decide to pass a complex object by call-by-value, you
need to define a copy constructor for it.

• The problem is that C++ on its doesn’t know how to copy
complex objects.

• So you have to describe exactly how to make a copy.

• Here’s a copy constructor for the point object:

point::point(const point& p) {
x = p.x;
y = p.y;

}

• (point is not complex enough to require a copy constructor, but
it make s a good example since we know it so well by now).
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• C++ knows this is a copy constructor by the signature.

• There is no return type (just like a constructor).

• The only argument is a reference to an object of the same class as
the constructor is defined for.

• The p that is the argument of the copy constructor is the object
being copied.

• What the copy constructor has to do is to say how to set the
value of every attribute of the object.

• In the example from point, we are saying that to make a copy
of p copy the attribute p.x into the attribute x of the copy, and
similarly for y.
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• Using a copy constructor we get a deep copy of the original object.

• This is in contrast to the shallow copy that we get if we don’t
define a copy constructor.

• Roughly speaking, if an object includes a pointer, we need to
make a deep copy of the object.

• For a more complex example of a copy constructor, see the
example program dynamic-stack.cpp.
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Passing arrays to functions

• Given the following example:

int sum( int A[], int n )
{

int s=0;

for ( int i=0; i<n; i++ )
s += A[i];

return( s );
} // end of sum()

• When the array A is passed to the function sum(), it is passed
using call-by-value on its base address (i.e., the address of A[0]

• However, passing an address call-by-value is the same as
passing the thing that is addressed call-by-reference.
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• Thus within the context of a function header definition, the
following two statements are equivalent:

int sum( int A[], ... ) { ... }

and

int sum( int *A, ... ) { ... }

but not in other contexts!

• This explains the function headers you see in some of the C++
libraries.
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• And the output is:

before calling myfun, a=7
inside myfun, a=8
after calling myfun, a=8
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Namespaces

• You have already been using namespaces as in:

#include <iostream>
using namespace std;

• The std namespace is the standard C/C++ namespace that
comes with the language

• A namespace is a way of grouping classes to avoid name conflict

• That is, you could have two things with the same name, but in
different name spaces, and then there would be no conflict
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• Declaration of classes within a namespace looks like this:

namespace myspace {

class myclass1 { ... };

class myclass2 { ... };

} \\ end of namespace

• Note that when you define a namespace in a header file, you do
not need to use the .h in the include statement:

#include <iostream>
using namespace std;

versus

#include <time.h>

• The first include statement is part of a namespace; the second is
not
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Summary

• This lecture was mainly concerned with call by reference.

– We recalled call-by-value.

– We looked at call-by-reference using pointers.

– We intrduced references; and

– We looked at call-by-reference using references

• We also looked briefly at namespaces and passing arrays to
functions.
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