DYNAMIC DATASTRUCTURES

¢ Today we will look at an extended example of using dynamic
memory.

e We will build a small stack datastructure.
e All the code for this is in except i on2. cpp.

e If you are happy reading and understanding the code, you don’t
need to bother with these notes.

cis15-spring2010-parsons-lectII.4 2

® We start by defining a simple building block from which we can
construct the stack.

e For a change we will usea st ruct .

® Remember that a st ruct is rather like a cl ass, except that its
members are publ i ¢ by default.

® We will exploit that here to avoid having to write access
functions.

® However, this is not good programming practice.
® Our definition, then is:

struct dataEl enent {
publi c:

int data;

dat aEl ement * dptr;

b

cis15-spring2010-parsons-lectIIl.4

e We can think of this as defining a box with two parts.

data

dptr

® In one part we can store data.

e In the other we have a pointer for linking boxes together.

cis15-spring2010-parsons-lectIIl.4 4

® We will start by creating an object of this type.

¢ To make sure we don’t lose it, we need a pointer

dat aEl enent = basePtr;
basePtr = new dat aEl enent;

e This sets up a situation that we can depict as:

basePtr

cis15-spring2010-parsons-lectIIl.4

e We can add data into the datastructure, deferencing the pointer
using either of

(*basePtr). data 4;

or

I
»

basePtr->dat a

giving us:

basePtr

cis15-spring2010-parsons-lectIIl.4

o Lets add another element to the stack.

e First we need a new element, and that requires another pointer:

dat aEl ement * t npPtr;
tnmpPtr = new dat aEl enent ;
tmpPtr->data = 1;

which gives us:

[[«
basePtr

[
tmpPtr

cis15-spring2010-parsons-lectIIl.4

e We want to make these two elements into a stack.

e That is, a datastructure where the most recently created element
is the one we have a link to, and that first element tells us where

the next one is:

e ;

basePtr

[]

tmpPtr

® We can achieve that using the following steps.

cis15-spring2010-parsons-lectIIl.4

the stack.

tnpPtr->dptr = basePtr;

I e I
basePtr

i I
tmpPtr ~—

cis15-spring2010-parsons-lectIIl.4

e First we make the new stack element point to the current top of

¢ Then we make basePt r point to this new element

basePtr = tnpPtr;

basePtr

(]2

tmpPtr —

e Which is basically what we want, redrawn slightly (but not
changing any significant values:

(] [e]

.
basePtr -

tmpPtr

cis15-spring2010-parsons-lectIIl.4

10

® We can add another new element.

e First we create the new element:

tmpPtr = new dat aEl enent ;
tnmpPtr->data = 6;

S e I 4
basePtr - "

|] s
tmpPtr

cis15-spring2010-parsons-lectIIl.4

¢ Then by shuffling pointer values around, we attach it to the
stack:

tnpPtr->dptr = basePtr;
basePtr = tnpPtr;

—_— —_—
basePtr

[]

tmpPtr

cis15-spring2010-parsons-lectIIl.4

¢ To remove an element from the stack we just do:

tmpPtr = basePtr;
basePtr = basePtr->dptr;

® Remembering to delete the memory we no longer need:
del ete tnpPtr;

takes us back to:

e ;

basePtr

[]

tmpPtr

cis15-spring2010-parsons-lectIIl.4

14

[4
e
basePtr
[]
tmpPtr
cis15-spring2010-parsons-lectIIl.4 13
Summary

e This lecture has been an extended illustration of the use of
pointers to create dynamic datastructures.

® Now we will stop making such intensive use of pointers, though
they are going to keep cropping up throughout the rest of the
course.

cis15-spring2010-parsons-lectIIl.4 15

