
DYNAMIC DATASTRUCTURES



Today

• Today we will look at an extended example of using dynamic
memory.

• We will build a small stack datastructure.

• All the code for this is in exception2.cpp.

• If you are happy reading and understanding the code, you don’t
need to bother with these notes.

cis15-spring2010-parsons-lectIII.4 2



• We start by defining a simple building block from which we can
construct the stack.

• For a change we will use a struct.

• Remember that a struct is rather like a class, except that its
members are public by default.

• We will exploit that here to avoid having to write access
functions.

• However, this is not good programming practice.

• Our definition, then is:

struct dataElement {
public:

int data;
dataElement* dptr;

};

cis15-spring2010-parsons-lectIII.4 3



• We can think of this as defining a box with two parts.

data

dptr

• In one part we can store data.

• In the other we have a pointer for linking boxes together.

cis15-spring2010-parsons-lectIII.4 4



• We will start by creating an object of this type.

• To make sure we don’t lose it, we need a pointer

dataElement* basePtr;
basePtr = new dataElement;

• This sets up a situation that we can depict as:

basePtr

cis15-spring2010-parsons-lectIII.4 5



• We can add data into the datastructure, deferencing the pointer
using either of

(*basePtr).data = 4;

or

basePtr->data = 4;

giving us:

basePtr

4

cis15-spring2010-parsons-lectIII.4 6



• Lets add another element to the stack.

• First we need a new element, and that requires another pointer:

dataElement* tmpPtr;
tmpPtr = new dataElement;
tmpPtr->data = 1;

which gives us:

basePtr

4

1

tmpPtr

cis15-spring2010-parsons-lectIII.4 7



• We want to make these two elements into a stack.

• That is, a datastructure where the most recently created element
is the one we have a link to, and that first element tells us where
the next one is:

1 4

tmpPtr

basePtr

• We can achieve that using the following steps.

cis15-spring2010-parsons-lectIII.4 8



• First we make the new stack element point to the current top of
the stack.

tmpPtr->dptr = basePtr;

basePtr

4

1

tmpPtr

cis15-spring2010-parsons-lectIII.4 9



• Then we make basePtr point to this new element

basePtr = tmpPtr;

1

tmpPtr

basePtr

4

• Which is basically what we want, redrawn slightly (but not
changing any significant values:

1 4

tmpPtr

basePtr

cis15-spring2010-parsons-lectIII.4 10



• We can add another new element.

• First we create the new element:

tmpPtr = new dataElement;
tmpPtr->data = 6;

41

tmpPtr

basePtr

6

cis15-spring2010-parsons-lectIII.4 11



• Then by shuffling pointer values around, we attach it to the
stack:

tmpPtr->dptr = basePtr;
basePtr = tmpPtr;

416

tmpPtr

basePtr

cis15-spring2010-parsons-lectIII.4 12



• To remove an element from the stack we just do:

tmpPtr = basePtr;
basePtr = basePtr->dptr;

41

tmpPtr

basePtr

6

cis15-spring2010-parsons-lectIII.4 13



• Remembering to delete the memory we no longer need:

delete tmpPtr;

takes us back to:

1 4

tmpPtr

basePtr

cis15-spring2010-parsons-lectIII.4 14



Summary

• This lecture has been an extended illustration of the use of
pointers to create dynamic datastructures.

• Now we will stop making such intensive use of pointers, though
they are going to keep cropping up throughout the rest of the
course.

cis15-spring2010-parsons-lectIII.4 15


