
EXCEPTION HANDLING

Today

• Today we will look at exception handling.

• This is a gentle introduction to the idea of engineering your
program so that it is robust against errors.

• It also leads naturally to testing and specification.

• Pohl covers exception handling in Chapter 10.

cis15-fall2009-parsons-lectIV.1 2

Exceptions

• Exceptions are unexpected error conditions.

• A typical example is a “divide by zero”:

x = y / z;

where z has value 0.

• Hitting such an exception causes your program to crash.

• C++ provides some mechanisms for recovering from such
exceptions.

cis15-fall2009-parsons-lectIV.1 3

assert

• The assert library cassert provides a way of checking the
correctness of input.

• As the library name suggests, this is a hold-over from C.

• For example, in our point class, as we have been using it, it
doesn’t make much sense to allow values of x and y that are less
than zero.

• assert allows us to make sure that this is not the case.

• For example, we can write a new setmethod for point.

cis15-fall2009-parsons-lectIV.1 4

• Instead of:

void point::set(double u) {
x = u;
y = 0;

}

• we can use:

void point::set(double u, double v) {
assert(u > 0);
x = u;
y = 0;

}

(see exception.cpp)

cis15-fall2009-parsons-lectIV.1 5

• If the expression in the assert is not true, then the program will
abort.

• The idea is that if things go wrong, it is better to detect them at
source rather than have to backtrack from some later point in the
program where the error shows up.

• You could, of course, do the same with conditionals:

void point::set(double u) {
if(u < 0){

exit(1);
}
x = u;
y = 0;

}

• assert is considered to be better style.

cis15-fall2009-parsons-lectIV.1 6

• assert is clearly limited.

• It allows us to trap an error and quit the program, but it doesn’t
allow us to try and fix the error.

• C++ includes some features which allow us to try to correct
errors.

cis15-fall2009-parsons-lectIV.1 7

try, throw and catch

• try, throw and catch provide a mechanism for detecting and
recovering from errors.

• For example we can change the way that we check for errors in
our point class.

• (see exception.cpp)

cis15-fall2009-parsons-lectIV.1 8

void point::set(double u, double v) {
try{

if(u < 0){
throw u;

}
else {

x = u;
}

}
catch(double u){

cout << "That value of x is no good" << endl;
cout << "I’m setting x to zero" << endl;
x = 0;

}
}

cis15-fall2009-parsons-lectIV.1 9

• Note that we start with a try.

• This encloses a throw.

• Following the try and the throw, there is a catch.

• The catch needs to come immediately after the try.

• The catch is called an exception handler.

• The signature of the catchmust match the type of the thing that
is thrown

cis15-fall2009-parsons-lectIV.1 10

Rethrowing exceptions

• If the catch can’t handle the exception on its own, then it can
pass the exception to another handler.

• It does this using a second throw.

• The second throw does not need an argument since you can
only rethrow the same thing you threw before.

• The second throw can’t pass the exception to another catch for
the same try.

• Instead it has to pass the exception out.

cis15-fall2009-parsons-lectIV.1 11

• That is you can rethrown from a catch if and only if that catch
is inside another try.

• The handler that catchs the second throw has to have the
correct signature for the thing that was originall thrown.

• Look at exception2.cpp for an example of rethrowing.

• Rethrowing gives you a way to check a single value for two
exceptions.

cis15-fall2009-parsons-lectIV.1 12

Multiple handlers for an exception

• A try block can be followed by multiple catches.

• In this case, the thing that is thrown is tested against the
catches in order.

• The first catch that has a signature that matches the thing that
is thrown will be executed.

• A match is when:

– The thrown object is the same type as the catch argument.

– The thrown object is of a derived class of the catch
argument.

– The thrown object can be converted to a pointer type that is
the same as the catch argument.

cis15-fall2009-parsons-lectIV.1 13

• Since a thrown object can potentially match several different
catches, it is an error to order the catches so that a handler
will never be called.

• For example:

catch(void *s)
catch(char *s)

is not allowed, but:

catch(char *s)
catch(void *s)

is okay.

cis15-fall2009-parsons-lectIV.1 14

• If no matching catch is found, the system looks to see if the try
block that generated the exception is nested in another try.

• If so, it will try to match the exception against catches for the
outer try block.

• This is the same thing that happens when you rethrow an
exception.

• If no matching exception handler is found, then a standard
handler is called.

• On most systems this is terminate.

cis15-fall2009-parsons-lectIV.1 15

More catch

• A catch looks like a function with one argument:

catch(double u){
cout << "I’m setting x to zero" << endl;
x = 0;

}

• The type of the “argument” determines whether the catch
matches a given throw.

• You are allowed to have a catch that matches any argument:

catch(...){
cout << "You have an error" << endl;

}

• That ... is the syntax for “match anything”

cis15-fall2009-parsons-lectIV.1 16

terminate

• terminate() is called when there is an exception that does not
have a handler.

• By default terminate() calls abort() to stop the program.

• You can redefine terminate() using set_terminate()

• You call set_terminate() with a pointer to the function you
want terminate() to call when there is an exception that does
not have a handler.

cis15-fall2009-parsons-lectIV.1 17

Exception specification

• C++ allows you to declare the kinds of exception that a function
will throw:

• For example:

void translate() throw(unknwn_wd, bad_grammar) {
.
.
<some stuff to do translation>
.
.

}

will only throw exceptions which are objects of type unknwn_wd
and bad_grammar.

cis15-fall2009-parsons-lectIV.1 18

• Convention says that if you don’t list the exception types, your
function can throw any kind of exception.

• If you have a list of exception types, and your function throws
another kind of exception, then this other kind of exception is
caught by unexpected.

• By default, unexpected calls terminate.

• You can redfine what unexpected calls using
set_unexpected()

• You use this just like set_terminate().

cis15-fall2009-parsons-lectIV.1 19

Summary

• This lecture looked at exception handling.

• We talked about assert.

• Then we looked at the more flexible environment provided by
try, throw and catch.

• While assert is simnple, try, throw and catch are more
complex.

• Once again there is a trade-off between complexity and power —
the more powerful and flexible mechanism is more complex.

cis15-fall2009-parsons-lectIV.1 20

