
SPECIFICATION ANDMULTIFILE COMPILATION

Today

• Today we will look at:

– The use of UML for specification.

– Multifile compilation

• Pohl covers UML very briefly on page 381, and does not
explicitly cover multifile compilation.

cis15-spring2010-parsons-lectIV.2 2

UML

• The Universal Modeling Language (UML) is a technique for
specifying software.

• The bit of UML that we will consider allows us to specify classes.

• For example:

cis15-spring2010-parsons-lectIV.2 3

• This sketches the class Contact.

• It lists a number of attributes:

– address

– city

– province

– country

– postalCode

• It is also possible to specify the methods of the class, the
“operations”.

• UML also specifies how private the attributes and methods are
to the class.

– The - before the attribute names specifies that they are
private.

cis15-spring2010-parsons-lectIV.2 4

• We have:

- for private attributes;

+ for public attributes; and

for protected attributes.

• In this case:

cis15-spring2010-parsons-lectIV.2 5

we have:

– A private attribute object, which is a list of Objects

– A public method getSize which and returns an integer.

– A public method set which is void and takes an int and an
Object as arguments.

– A public method get which returns an Object and takes an
int as an argument.

• The next piece of graphical notation relates sub-classes to
super-classes (specializations to generalizations).

cis15-spring2010-parsons-lectIV.2 6

• In this example:

cis15-spring2010-parsons-lectIV.2 7

• Client and Company are both sub-classes of Contact.

• They each have some additional attributes on top of those in
Contact.

• By default sub-classes inherit everything in the parent class.

• They can also provide redefinitions of operations.

• Here:

the OntarioTaxCalculator overrrides the definition of
calculateTaxes.

cis15-spring2010-parsons-lectIV.2 8

• Finally, we can specify the relationship between different classes
that refer to one another.

says there is one Client that is the contactPerson for a
Company and that a Company has zero or more employees
who are Clients.

• The notation ..

∗ is the bit that means “or more”.

• Thus 1, 3..
∗ means one, three or more.

cis15-spring2010-parsons-lectIV.2 9

Multifile compilation

• So far we have written all of our code in one file.

• Often it is annoying to do this.

– Files get very big

– We end up doing a lot of cut and paste (as with point).

• In these cases, it is often better to split the code into multiple
files.

• We can do this easily — it just takes a bit of care.

cis15-spring2010-parsons-lectIV.2 10

• Let’s start by describing a common way to set this up.

• We can divide a class definition, like that for class point, into two
bits.

• One is the bit that contains the class statement:

class point{
:
:

};

we put this in a file called point.h

cis15-spring2010-parsons-lectIV.2 11

• The other bit is part that contains the method/function
descriptions:

void point::print() const{
:

}

and so on.

• We put that in a file called point.cpp

• We link the two files by adding:

#include"point.h"

at the start of point.cpp

• Note the speech marks rather than the usual < and >.

cis15-spring2010-parsons-lectIV.2 12

• This (roughly speaking) tells the compiler to add the contents of
the .h file to the .cpp file.

• (Actually it tells the preprocessor, but the call to the prepreocessor
is done from within g++ so it is invisible to the programmer.)

• We will also need to include any libraries that are used in
point.cpp.

cis15-spring2010-parsons-lectIV.2 13

• Now, we will typically want to use point in some program, and
so we will have another file, say testpoint.cpp which
contains something like:

int main (){

point p;
p.set(2, 3);
p.print();

return 0;
}

• This clearly needs to

#include"point.h"

as well.

cis15-spring2010-parsons-lectIV.2 14

• How do we compile these files?

• If we try to compile point.cpp:

g++ point.cpp -o point

we get an error message like:

/usr/lib/gcc/x86_64-linux-gnu/4.2.4/../
../../../lib/crt1.o: In function ‘_start’:

(.text+0x20): undefined reference to ‘main’
collect2: ld returned 1 exit status

and we remember that every C++ program needs to have a
main.

cis15-spring2010-parsons-lectIV.2 15

• If we try to compile testpoint.cpp:

g++ testpoint.cpp -o testpoint

we get an error message like:

/tmp/ccT2sdKH.o: In function ‘main’:
main.cpp:(.text+0x1c0):

undefined reference to ‘point::print()’
main.cpp:(.text+0x1e1):

undefined reference to ‘point::set(double, double)’
main.cpp:(.text+0x1f9):

undefined reference to ‘point::print()’
collect2: ld returned 1 exit status

because testpoint.cpp doesn’t include the definitions of the
function members of point.cpp.

cis15-spring2010-parsons-lectIV.2 16

• However, if we compile everything together:

g++ testpoint.cpp point.cpp -o testpoint

we get the result we want.

cis15-spring2010-parsons-lectIV.2 17

• There’s another way to do this also, one that is better when
creating programs with multiple classes (which is, of course,
typical).

• Here we do the compilation in two steps:

g++ -c point.cpp -o point
g++ testpoint.cpp point -o testpoint

• The first step uses the -c switch to stop compilation before
running the linker.

• If we do this, the compiler does everything except check that it
knows how to execute all the functions in the program.

• So it is happy with compiling point.cpp because it doesn’t
bother to check for a definition of main.

cis15-spring2010-parsons-lectIV.2 18

• The check only takes place in the second step, when there is a
main, and when the compiler also knows about the member
functions of class point (from the file point).

cis15-spring2010-parsons-lectIV.2 19

• Now, let’s assume we have a new class, line, say, which has
some pointmembers.

• There will be a file line.hwhich gives the class definition and a
file line.cpp which defines the members.

• We will also write a file testline, which uses the line class.

• You can find these files on the web page for Unit IV.

• Since line uses point, we include:

#include"point.h"

in line.h.

cis15-spring2010-parsons-lectIV.2 20

• We can compile line successfully using the same approach as
with point:

g++ -c line.cpp -o line

• But you can’t compile testline in the same way as before.
This:

g++ testline.cpp line -o testline

will cause an error.

cis15-spring2010-parsons-lectIV.2 21

• The reason is that testline (indirectly) needs point.

• So now we have a three step compilation process:

g++ -c line.cpp -o line
g++ -c testline.cpp -o testline
g++ testline line point -o testline.exe

• We have to use a different name than testline for the final
output.

cis15-spring2010-parsons-lectIV.2 22

• Now let’s imagine we have another file with a main program,
let’s call it prog.cpp.

• prog uses both line and point.

• You might naturally think that you should have:

#include"point.h"
#include"line.h"

in prog.cpp

• If you do that, you’llk get an error when you compile:

g++ prog.cpp line point -o prog

because point.h will be included twice. Once through line.h
and once directly.

cis15-spring2010-parsons-lectIV.2 23

• We can just figure out we only need line.h, but in complex
code this is hard to do.

• Instead we use one of these methods:

– pragma once

– include guards

• To use the first, we put:

#pragma once

at the start of point.h.

• This tells the compiler (well, the preprocessor) to only ever
include that file once in a compilation.

cis15-spring2010-parsons-lectIV.2 24

• Include guards a an older idea, and a bit clunkier.

• Here you wrap the definition of the point class:

class point {

private:
double x, y;

public:

:

}

in some commands that mean the definition is only ever read
once.

cis15-spring2010-parsons-lectIV.2 25

#ifndef POINT_H
#define POINT_H

class point {

private:
double x, y;

public:

:

};

#endif

cis15-spring2010-parsons-lectIV.2 26

Make

• With lots of source files, doing all the compilation can be a pain.

– Typically it is hard to remember which files need to be
recompiled when you have made changes.

• As you can see, when we start splitting programs into separate
files, we tend to end up with lots of source files.

• make is a Unix tool that makes managing this a bit easier.

• To use make, you need a file called Makefile.

• A sample Makefile is on the next slide.

• Note that a “project” in Code::Blocks and other IDEs is really no
more than a Makefile with a fancy front-end.

cis15-spring2010-parsons-lectIV.2 27

A simple makefile
#
Simon Parsons
May 31st 2009

Default target
.PHONY: all
all: craps

A rule to build craps
craps: craps.cpp
g++ -o craps craps.cpp

This rule tells make to delete all the output files
.PHONY: clean
clean:
rm craps

cis15-spring2010-parsons-lectIV.2 28

• Lines beginning with # are comments.

• This is a rule:

craps: craps.cpp
g++ -o craps craps.cpp

it says:

When I tell you to make the target craps, you need the file
craps.cpp, and you do the making by executing
g++ -o craps craps.cpp

• Note that the command part is indented one tab stop.

• To execute this rule you would type:

make craps

which tells make to look in the Makefile for a rule which starts
with craps.

cis15-spring2010-parsons-lectIV.2 29

• The first line of the rule:

craps: craps.cpp

tells make to watch the file craps.cpp.

• It will only do the compilation in;

g++ -o craps craps.cpp

if craps.cpp has changed since the last compilation.

• Otherwise it will report:

make: ‘craps’ is up to date.

cis15-spring2010-parsons-lectIV.2 30

• This is another kind of rule:

.PHONY: all
all: craps

• This tells make that for the target all, that is if you type make
all, it should make the target craps.

• The all target is typically the main thing you are writing.

• The all target is what gets made when you just type make.

• The:

.PHONY: all

says that there is no input file that is associated with the all
target, so make has no need to check if the file has changed.

cis15-spring2010-parsons-lectIV.2 31

• The final rule:

.PHONY: clean
clean:
rm -f craps

is another typical rule to see.

• This tells make how to clean up all the results of compilation.

• We use rm -f so that we don’t get an error if the file doesn’t
exist.

• Often make files will have an install target which moves the
final object file to another part of the file system, and so a typical
use of make is:

make all
make install
make clean

cis15-spring2010-parsons-lectIV.2 32

• The advantages of make are more obvious when you have lots of
source files to manage.

• Look at the Makefile that is zipped up with the multifile
examples.

• This has a rule for building:

– point

– line

– testpoint

– testline

– prog

• make keeps track of which files need to be compiled. and when
you use it to compile any target, it will automatically recompile
any files that need to be recompiled.

cis15-spring2010-parsons-lectIV.2 33

Summary

• This lecture described some aspects of UML.

• There is a lot (looooooot) more to UML than what we covered,
but what we looked at should give you an idea of how to use
UML to specify classes and the relationship between classes.

• We also looked at how to split source code among several files.

• Since it is a handy tool when we have lots of source files, we also
briefly discussed make.

• Again, there is much to know about make that we did not have
time to go into.

cis15-spring2010-parsons-lectIV.2 34

