
VIRTUAL FUNCTIONS

Today

• Today we will look at the topic of virtual functions.

• These turn out to be of great importance in object oriented
programming.

• In particular they allow us to exploit inheritance to achieve
polymorphism.

• This material is taken from Pohl, Chapter 8, but Pohl doesn’t say
much, so you might want to look at www.learncpp.com which
has some explanations of virtual functions.

• The section on polymorphism on www.cplusplus.com also
covers this material nicely.

cis15-spring2010-parsons-lectV.2 2

More Inheritance

• Last time we ended up with an inheritance hierarchy that looked
like:

animal

rabbit fox

• That is the class rabbit and the class fox are both subclasses of
the class animal.

• This lecture we will look at expanding it.

cis15-spring2010-parsons-lectV.2 3

• By defining a class living, we can exploit the fact that carrot
has some aspects (to do with location) that are just like rabbit
and fox,.

• This gives us a heirarchy that looks like this:

animal

rabbit fox

living

plant

carrot

• So animal is a subclass of living and so is plant.

• carrot is then a subclass of plant.

cis15-spring2010-parsons-lectV.2 4

• With this re-arrangement of the class hierarchy, we have to
reorganise the design of the classes.

• A revamped version of the example may be found in
rabbit4.cpp.

• Not all of the functions that exist in the sub-classes make sense in
the super class.

– For example, since plants do not move, it makes little sense to
have a move class in living.

• However, function beEaten, does apply to all living things and
so we will define it in living.

• However, in our example, every class implements beEaten in
its own way, so, we will over-ride the definition in all the
sub-classes.

cis15-spring2010-parsons-lectV.2 5

• Now, recall the function that we defined in the last lecture:

• We have:

bool animal::hungrier(animal a1, animal a2){
if(a1.consumed < a2.consumed){

return true;
}
else {

return false;
}

• Since we can pass this two rabbits, two foxes, or a rabbit
and a fox, this gives us a simple form of polymorphism.

• With a function like beEaten that exists in every class, we can
go further.

cis15-spring2010-parsons-lectV.2 6

• Let’s define:

void howDoYouDie(living *ptr){
ptr->beEaten();

}

• This takes as its argument a pointer to a living, so a natural
way to call this is:

living l;
living *lptr = &l;
howDoYouDie(lptr);

• Given the way beEaten is implemented, this will print:

I live, therefore I can be eaten

cis15-spring2010-parsons-lectV.2 7

• Since plant is a subclass of living, we can also do this:

plant p;
lptr = &p;
howDoYouDie(lptr);

• However, the final line generates:

I live, therefore I can be eaten

because howDoYouDie calls the beEaten for living rather
than the beEaten for plant

• The system picks the version of beEaten that matches the type
of the pointer.

• How can we call the right beEaten, beairng in mind we still
want to keep the pointer the same so that howDoYouDie
remains polymorphic?

cis15-spring2010-parsons-lectV.2 8

Virtual functions

• The answer is that we make beEaten a virtual function.

• We do this by adding the keyword virtual:

virtual void beEaten(){
cout << "I live, therefore I can be eaten";
cout << endl;

}

at the highest point up the inheritance hierarchy — here that is in
living

cis15-spring2010-parsons-lectV.2 9

• Now when we do this:

plant p;
lptr = &p;
howDoYouDie(lptr);

the C++ system does not just pick the version of beEaten to
match the pointer.

• Instead, the virtualmakes it go down the hierarchy while the
program is running to find the most specific beEaten.

• Most specific means “lowest down the hierarchy”

cis15-spring2010-parsons-lectV.2 10

• So in rabbit4.cpp, each of:

– plant

– animal

– carrot

– rabbit

will call their own beEaten.

• However fox, which doesn’t over-ride the version it inherits,
will use the one from animal.

cis15-spring2010-parsons-lectV.2 11

• C++ style suggests that we should define functions like
beEaten that we know will be overridden as virtual functions.

• This allows us to define functions so they makes sense in the
context of the class hierarchy.

– The ability to be eaten is a property of living things so it
should be defined at the level of living.

• Making them virtual rather than non-virtual functions allows us
to get the fucntionality we need

– Each living thing will beEaten in a different way and we let
the system pick the appropriate way in polymorphic
functions.

cis15-spring2010-parsons-lectV.2 12

Virtual destructors

• www.learncpp.com points out that you should always make
destructors virtual in a super-class.

• Otherwise, just as with beEaten, there will be times when the
wrong function will be called:

– The one in the base class not the one in the derived class.

• If we are writing a destructor it suggests that we need to be sure
to delete some memory.

• So make sure that the right destructor gets called, and it all gets
deallocated.

cis15-spring2010-parsons-lectV.2 13

Abstract classes

• Just to be confusing, C++ makes another use of the keyword
virtual.

• Rather than:

virtual void beEaten(){
cout << "I live, therefore I can be eaten";
cout << endl;

}

rabbit5.cpp has living define:

virtual void beEaten() = 0;

• This is a pure virtual function.

cis15-spring2010-parsons-lectV.2 14

• Clearly a function like this can’t be called (what would it do?), so
if we create one, it has two important consequences.

• The first is that we can’t make any instance of a class that
contains a pure virtual function.

• In rabbit5.cpp we can’t make an living objects.

• The class living becomes what we call an abstract class

cis15-spring2010-parsons-lectV.2 15

• The second consequence of the pure virtual function is that
every sub-class of living has to define beEaten.

• If it doesn’t, then that class becomes abstract, and we can’t make
any instances of it either.

• rabbit5.cpp is a version of the rabbit example with an
abstract version of living.

cis15-spring2010-parsons-lectV.2 16

• There are a couple of reasons to make beEaten a pure virtual
function.

• First, because we want to prevent anyone making an instance of
class living.

– You can’t create an instance of an abstract class.

• Second, because you want to force all sub-classes of living to
define their own beEaten.

– Otherwise you won’t be able to make instances of them.

• In both cases we can use abstract classes to make the class
hierarchy work the way that we want it to.

cis15-spring2010-parsons-lectV.2 17

Summary

• This lecture has looked at virtual functions.

• When we create a virtual function we are enabling
polymorphism by forcing the C++ system to find the right
over-riding function at run-time.

• We also looked at pure virtual functions.

• Defining just one pure virtual function in a class makes it an
abstract class and prevents us from making instances of it.

• Abstract classes are used to structure the inheritance hierarchy.

cis15-spring2010-parsons-lectV.2 18

