
MULTIPLE INHERITANCE

Today

• Today we will look in more detail at how C++ achieves
inheritance.

• This (hopefully) explains some of the strange things that you
have seen so far.

• We will end by looking at multiple inheritance, where a class
inherits from more than one class.

• Again the textbook covers this in Chapter 8.

• And again it doesn’t really cover it in enough detail.

• Let’s start with a recap.

cis15-spring2010-parsons-lectV.3 2

Composition and inheritance

• We use composition when one class contains a data member that
is an object of another class.

• Thus in rabbit4.cpp, the class living contains a data
member location which is an object of the class point.

• Thus living and point are related by composition.

• Any object of type living thus includes an object, called
location, of type point.

• To access the private data members of location from within
an object that contains it, we have to use the public function
members of point.

cis15-spring2010-parsons-lectV.3 3

• We use inheritancewhen one class extends another class, as in:

class animal : public living

from rabbit5.cpp.

• Here living is called the base class or super-class and animal is
called the sub-class.

• We can think of this as meaning that an object of class animal
contains all the data and function members of class living.

• If we had an object a of class animal, we would refer to its
member location by:

a.location

cis15-spring2010-parsons-lectV.3 4



• And the data member x of location as:

a.location.x

• However, it is not quite as simple as that.

• The way that C++ implements inheritance is such that an object
of class animal contains an object of class living (rather than
the members of that object).

• Access to the members of this sub-object follow the usual access
rules.

• Thus the private data members of living are not accessible
from within animal.

• This is typically not what we want.

cis15-spring2010-parsons-lectV.3 5

“public”, “private” and “protected”
• One way to handle the fact that a sub-class can’t access the
private members of a base class is to write publicmethods
that access them.

• Methods like set, getX and getY for point.

• Another approach is to redefine the private members as
protected.

• Thus:

class living {

protected:

point location;
bool eaten;

};

cis15-spring2010-parsons-lectV.3 6

• Using protected here means that the members are treated as
public in classes derived from living (like animal).

• However, for classes that are not derived from living, the
protected data members are treated like they are private.

• This is exactly what we want in rabbit4.cpp.

• The general question of how sub-classes can access members of
base classes is more complex than this, however.

cis15-spring2010-parsons-lectV.3 7

Access to base class members

• Each member of a base class can be:

– public

– protected

– private

• Classes can also be derived as:

– class A : public B

– class A : protected B

– class A : private B

• These access levels interact.

cis15-spring2010-parsons-lectV.3 8



• If we have class A : public B

– public and protectedmembers of B remain public and
protected in A.

• If we have class A : protected B

– public and protectedmembers of B are protected in A.

• If we have class A : private B

– public and protectedmembers of B become private in
A.

• Of course, even if base class members are private they can be
accessed by friend classes.

• (Now would be a good time to go back and recap friend
classes).

cis15-spring2010-parsons-lectV.3 9

Inheritance again

• Let’s go back to what we said above, that:

The way that C++ implements inheritance is such that an object
of class animal contains an object of class living (rather than
the members of that object).

• This is literally true.

• An object of class animal has two parts, an object of class
living and an object with all the things that are in animal but
not in living

• The fact that these are separate objects explains the problem with
private data.

• It also explains some other stuff.

cis15-spring2010-parsons-lectV.3 10

• So an animal object looks like:

animal

living

• When we reference an animal object by name or by an animal
pointer, the system will look first in the animal part.

• Only if it can’t find the referenced member will it look in the
living part.

cis15-spring2010-parsons-lectV.3 11

• Thus if we have:

animal a;
a.beEaten();

and

animal *aptr = &a
aptr->beEaten();

then the copy of beEaten() that will be called will be the one in
animal.

• If we want to call the one in living we can use:

aptr->living::beEaten();

explicitly calling the version in the living bit of a.

cis15-spring2010-parsons-lectV.3 12



• If instead we have:

living *lptr = &a
lptr->beEaten();

then by default the version of beEaten that will be executed is
the one in the living bit of a because the pointer is one that
points to living.

• As we already saw, we can force it to call the version in animal
by making it virtual.

cis15-spring2010-parsons-lectV.3 13

Multiple inheritance

• In statements of class derivation like

class A : public B

we are not limited to deriving from a single base class.

• We can have, for example:

class A : public B, public C

• This is called multiple inheritance.

• In the latter case A has all of the members of B and C.

cis15-spring2010-parsons-lectV.3 14

• This offers scope for ambiguity.

• If B and C both have a function print, and A does not, then in

A adele;
adele.print()

is ambiguous.

• We have to say which print we want, for example:

adele.B::print();

cis15-spring2010-parsons-lectV.3 15

• When we make a statement like:

class A : public B, public C

there is no limit to the number of classes A can inherit from.

• However, the same class cannot appear twice.

• This does not stop a class inheriting from the same class twice
though.

cis15-spring2010-parsons-lectV.3 16



• As an example, consider a variation on the classes in
rabbit4.cpp.

• We could have:

class predator: public living{

public:
void eat();
};

class prey: public living{

public:
void beEaten();
};

cis15-spring2010-parsons-lectV.3 17

• carrot is then a sub-class of prey, and fox is a sub-class of
predator.

• rabbit is both predator and prey (it eats carrots but is eaten by
foxes), so we would define:

class rabbit: public predator, public prey

• Now we have the class hierarchy:

carrotrabbit

living

predator prey

fox

and rabbit now inherits from living twice, once through
predator and once through prey.

cis15-spring2010-parsons-lectV.3 18

• This means it has two copies of all the members that it inherits
from living.

• If we have:

rabbit peter;
peter.location.set(1, 2);

it is ambiguous which location this refers to.

• As before, we can get around this by using class scope.

peter.prey::location.set(1, 2);

says to use the version of location inherited through prey.

• A more elegant solution is to use a virtual base class.

cis15-spring2010-parsons-lectV.3 19

• If we define:

class predator: virtual public living{

public:
void eat();
};

class prey: virtual public living{

public:
void beEaten();
};

class rabbit: public predator, public prey{
};

then rabbit will only contain one copy of living.

cis15-spring2010-parsons-lectV.3 20



Unified Modelling Language

• We’ll finish by recapping what we mentioned before about UML.

• UML is a method of designing and documenting object-oriented
designs.

• We are already familiar with the idea of drawing the relationship
between classes:

animal

rabbit fox

living

plant

carrot

UML expands on this.

cis15-spring2010-parsons-lectV.3 21

• UML uses the same notation as we have been using already to
show inheritance between classes.

• UML adds a graphical representation of composition:

living point

indicates that living includes an object of type point

• UML also shows the data and function members that a class
contains.

• The full UML representation of living and point from
rabbit4.cpp is shown on the next slide.

cis15-spring2010-parsons-lectV.3 22

point

x
y

print
set
getX
getY

print
set
getX
getY

beEaten

eaten
location

living

cis15-spring2010-parsons-lectV.3 23

• Clearly we could expand the rest of the class hierarchy with this
additional information.

• The idea behind UML is to use this graphical notation to develop
the class design before coding.

• The diagrams also serve as a form of documentation.

• Tools for drawing UML diagrams, tutorials and much more can
be found at http://www.uml.org/.

cis15-spring2010-parsons-lectV.3 24



Summary

• This lecture looked in detail at inheritance.

• We started with a recap of the differences between composition
and derivation.

• Then we looked at access to members from the base class.

• And we looked at the possibilities and problems of multiple
inheritance.

• Finally we recapped some UML.

cis15-spring2010-parsons-lectV.3 25


