
POLYMORPHISM

Today

• We will finish off our discussion of inheritance by talking more
about the way that inheritance enables polymorphism.

• This will lead us into a few topics that we didn’t yet cover:

– Operator overloading

– The relationship between friendship and inheritance

• It will also preview the idea of templates which we will cover
properly in the next unit.

• The textbook says little about polymorphism explcitly (see pages
484-485) but does have a lot to say about the methods for
achieving it in various places.

• For example there is a long discussion of operator overloading
on pages 243-263.

cis15-spring2010-parsons-lectV.4 2

Polymorphism

• The folk who know about these things have declared that C++
has four mechanisms that enable polymorphism:

– Coercion

This is considered to be ad hoc polymorphism.

– Overloading

Again, this is considered to be ad hoc.

– Inclusion

This is pure polymorphism.

– Parametric polymorphism

Again this is pure.

• We will look at each of these in turn in some detail.

cis15-spring2010-parsons-lectV.4 3

Coercion

• Coercion is when we write code that forces type conversions.

• It is a limited way to deal with different types in a uniform way.

• For example

double x, d;
int i;
x = d + i;

• During the addition, the integer i is coerced into being a double
so that it can be added to d.

• So you have been using polymorphism for ages without
knowing it.

cis15-spring2010-parsons-lectV.4 4



Overloading

• Overloading is the use of the same function or operator on
different kinds of data to get different results.

• As we recall:

double x;
int a = 5;
int b = 5;
x = a/b;

gives us a different result than:

double x;
double a = 5;
double b = 2;
x = a/b;

cis15-spring2010-parsons-lectV.4 5

• In the first case the division is integer division and x has value 2.

• In the second case the division is floating point, and x has value
2.5.

• (It should be clear that there is no coercion in this case — for
coercion the arguments would be of different types).

• The difference is because there are different versions of \ for
integers and for doubles.

• It is also possible to define new operators, through operator
overloading.

cis15-spring2010-parsons-lectV.4 6

Operator Overloading

• Many of the operators in C++ can be overloaded.

• We have already seen some — the string class for example
overloads +, += and []..

• We can overload operators to work with classes we define.

cis15-spring2010-parsons-lectV.4 7

• Let’s overload an operator for the following class:

class person {

private:
string first_name;
string second_name;
int age;

public:

person(string, string, int);
void print();

};

cis15-spring2010-parsons-lectV.4 8



• Let’s imagine we need to sort person objects by age.

• We could access ages and compare them with >.

• We could also overload >, and that would reduce the amount of
code we need to write if we do lots of comparisons.

• To overload > in class person we add:

bool operator>(person);

as a function member of the person class.

• We then define what we want the operator to do.

• Note that a binary operator becomes a function with one
argument.

cis15-spring2010-parsons-lectV.4 9

• This is because when we call:

a > b

the system processes this as:

a.>(b);

that is as calling the method > of the first object with the second
object as its argument.

cis15-spring2010-parsons-lectV.4 10

• The code for the operator then becomes:

bool person::operator>(person p){
if (this->age > p.age){

return true;
}
else {

return false;
}

}

• using the this pointer to refer to the relevant attribute of the
first object.

• For the full code of an example using this overloaded operator,
see the file overload.cpp on the course website.

cis15-spring2010-parsons-lectV.4 11

Inclusion

• We have aready seen that inclusion — which is what inheritance
gives us, the inclusion of the attributes of one class inside
another class — helps us schieve polymorphism.

• We can define functions on animal and pass them a rabbit.

• When we set up functions to be virtual and make them have
arguments that are pointers to animal, we can get the system to
look through the class heirarchy to call exactly the most
appropriate function.

• Run-time determination of sub-type.

cis15-spring2010-parsons-lectV.4 12



• Note that this combination of inheritance and pointers to convert
from one pointer to another is not limited to passing parameters.

• With:

living l;
living *lptr;
animal *aptr;

we are allowed to do this:

lptr = aptr;

converting from a pointer to animal to a pointer to living.

cis15-spring2010-parsons-lectV.4 13

• The reverse:

aptr = lptr;

or

aptr = &l;

is not allowed.

cis15-spring2010-parsons-lectV.4 14

A last thing about inheritance

• A derived class inherits every member of a base class except:

– its constructor and its destructor

– its operator members

– its friends

• Note particularly the point about friends (and if it helps, think
about how many of your parents’ friends are your friends too :-)

cis15-spring2010-parsons-lectV.4 15

• Recall that when:

– b2 is a friend of b1

– d1 is derived from b1

– d2 is derived from b2

• It is the case that:

– b2 has special access to private members of b1, as a friend

– But d2 does not inherit this special access

– Nor does b2 get special access to d1 (derived from friend b1)

cis15-spring2010-parsons-lectV.4 16



Parametric polymorphism

• This means writing code where the type of thedata isn’t
specified.

– It is determined at run-time.

• In C++ this means templates.

• For example:

template <class T>
bool greater(T a, T b){

return (a > b);
}

• We will look at templates in detail in the next unit.

cis15-spring2010-parsons-lectV.4 17

Summary

• In this lecture we finished up talking about inheritance by
thinking about how it allows us to write polymorphic code.

• In doing this we looked at the various forms of polymorphism.

• We also spent some time talking about operator overloading and
reminding ourselves of the relationship between inheritance and
friendship.

• Finally we previewed templates.

cis15-spring2010-parsons-lectV.4 18


