POLYMORPHISM

e We will finish off our discussion of inheritance by talking more
about the way that inheritance enables polymorphism.

e This will lead us into a few topics that we didn’t yet cover:

- Operator overloading
— The relationship between friendship and inheritance

e It will also preview the idea of templates which we will cover
properly in the next unit.

¢ The textbook says little about polymorphism explcitly (see pages
484-485) but does have a lot to say about the methods for
achieving it in various places.

¢ For example there is a long discussion of operator overloading
on pages 243-263.

cis15-spring2010-parsons-lectV.4

Polymorphism|

® The folk who know about these things have declared that C++
has four mechanisms that enable polymorphism:
— Coercion
This is considered to be ad hoc polymorphism.
— Overloading
Again, this is considered to be ad hoc.
— Inclusion
This is pure polymorphism.
— Parametric polymorphism
Again this is pure.

o We will look at each of these in turn in some detail.

cis15-spring2010-parsons-lectV.4

Coercion

e Coercion is when we write code that forces type conversions.
e [t is a limited way to deal with different types in a uniform way.

¢ For example

doubl e x, d;
int i;
x =d+i;
¢ During the addition, the integer i is coerced into being a double
so that it can be added to d.

® So you have been using polymorphism for ages without
knowing it.

cis15-spring2010-parsons-lectV.4

Overloading

® Overloading is the use of the same function or operator on
different kinds of data to get different results.

o As we recall:

doubl e x;
int a =5;
int b =5;
X = al b;

gives us a different result than:

¢ In the first case the division is integer division and X has value 2.

¢ In the second case the division is floating point, and x has value
2.5.

e (It should be clear that there is no coercion in this case — for
coercion the arguments would be of different types).

e The difference is because there are different versions of \ for
integers and for doubles.

e It is also possible to define new operators, through operator
overloading.

cis15-spring2010-parsons-lectV.4

doubl e x;
double a = 5;
double b = 2;
X = alb;
cis15-spring2010-parsons-lectV.4
(Operator Overloading|

® Many of the operators in C++ can be overloaded.

® We have already seen some — the st ri ng class for example
overloads +, +=and [] ..

® We can overload operators to work with classes we define.

cis15-spring2010-parsons-lectV.4

e Let’s overload an operator for the following class:

cl ass person {

private:
string first_nane;
string second_nane;
i nt age;

public:
person(string, string, int);

void print();
b

cis15-spring2010-parsons-lectV.4

® Let’s imagine we need to sort per son objects by age.
® We could access ages and compare them with >.

e We could also overload >, and that would reduce the amount of
code we need to write if we do lots of comparisons.

e To overload > in class per son we add:
bool operator>(person);
as a function member of the per son class.

© We then define what we want the operator to do.

® Note that a binary operator becomes a function with one
argument.

cis15-spring2010-parsons-lectV.4 9

e This is because when we call:
a>b
the system processes this as:
a.>(b);

that is as calling the method > of the first object with the second
object as its argument.

cis15-spring2010-parsons-lectV.4 10

® The code for the operator then becomes:

bool person:: operator>(person p){
if (this->age > p.age){
return true;

}
el se {
return false;
}
}
e using the t hi s pointer to refer to the relevant attribute of the
first object.

e For the full code of an example using this overloaded operator,
see the file over | oad. cpp on the course website.

cis15-spring2010-parsons-lectV.4 11

Inclusion

® We have aready seen that inclusion — which is what inheritance
gives us, the inclusion of the attributes of one class inside
another class — helps us schieve polymorphism.

® We can define functions on ani mal and pass them ar abbi t.

e When we set up functions to be virtual and make them have
arguments that are pointers to ani mal , we can get the system to
look through the class heirarchy to call exactly the most
appropriate function.

e Run-time determination of sub-type.

cis15-spring2010-parsons-lectV.4 12

® Note that this combination of inheritance and pointers to convert
from one pointer to another is not limited to passing parameters.

o With:
living |;
living *lptr;
ani mal xaptr;
we are allowed to do this:
I ptr = aptr;

converting from a pointer to animal to a pointer to living.

cis15-spring2010-parsons-lectV.4 13

® The reverse:

aptr = Iptr;
or
aptr = & ;

is not allowed.

cis15-spring2010-parsons-lectV.4

14

A last thing about inheritance|

e A derived class inherits every member of a base class except:

— its constructor and its destructor
— its operator members
— its friends

® Note particularly the point about friends (and if it helps, think
about how many of your parents’ friends are your friends too :-)

cis15-spring2010-parsons-lectV.4 15

® Recall that when:

— b2 is a friend of bl
- dl is derived from bl
— d2 is derived from b2

e [t is the case that:

— b2 has special access to private members of bl, as a friend
— But d2 does not inherit this special access
— Nor does b2 get special access to d1 (derived from friend bl)

cis15-spring2010-parsons-lectV.4

Parametric polymorphism

® This means writing code where the type of thedata isn’t
specified.

— It is determined at run-time.
® In C++ this means templates.

® For example:
tenpl ate <class T>
bool greater(T a, T b){
return (a > b);

}

® We will look at templates in detail in the next unit.

cis15-spring2010-parsons-lectV.4

Summary

e In this lecture we finished up talking about inheritance by
thinking about how it allows us to write polymorphic code.

¢ In doing this we looked at the various forms of polymorphism.

® We also spent some time talking about operator overloading and
reminding ourselves of the relationship between inheritance and
friendship.

¢ Finally we previewed templates.

cis15-spring2010-parsons-lectV.4 18

