
THE STANDARD TEMPLATE LIBRARY

Today

• Today we delve deeper into the use of templates with a look at
the Standard Template Library.

• In the same way that the standard library adds functionality to
the basic C/C++ language , the template library provides
templates.

• Both save you having to write lots of code from scratch.

• Good references are:

– http://www.learncpp.com/cpp-tutorial

– http://www.cplusplus.com/doc/tutorial

– http://www.cppreference.com/index.html

• You can also look at chapters 6 and 7 in the Pohl textbook.

cis15-spring2010-parsons-lectVI.3 2

Standard Template Library

• The STL or standard template library is a collection of useful
templates that are part of the C++ standard namespace

• In order to use each template in the STL, you need to include the
appropriate header file

• For example, in order to use the vector template, you need to
do:

#include <vector>
using namespace std;

• The STL supports a variety of data structures and numerical
algorithms.

cis15-spring2010-parsons-lectVI.3 3

Containers

• Containers are classes that store groups of like elements.

• Kind of like fancy, more capable arrays

• There are two types of containers:

– sequence containers
which are: vector, list, deque

– associative containers
which are: set, multiset, map multimap and bitset

• We will look at both of these kinds of container.

cis15-spring2010-parsons-lectVI.3 4

Vectors

• A vector is a sequence container that is a lot like an array

• But it can also handle dynamic expansion

– Rather like the string class can

• This means that it won’t overflow

• It can be navigated in a number of ways:

– using an index (like an array);

– using an iterator (more on that ahead).

• It can also be accessed like a stack.

cis15-spring2010-parsons-lectVI.3 5

• Here’s a first example:

vector<int> V(10);
for (int i=0; i<10; i++) {

V[i] = i * 10;
}

• We declare V to be a vector with 10 elements.

• We then use an index, just like for an array, to set every element
of the vector.

• (This and other examples can be found in vector.cpp.

cis15-spring2010-parsons-lectVI.3 6

• Now let’s look at accessing it using an iterator:

vector<int>::iterator p;
for (p = V.begin(); p != V.end(); p++) {

cout << *p << " ";
}

• We declare p to be an iterator for a vector of integers.

• An iterator is somewhat like a pointer.

• We start pwith the location of the first element in V.

• Then we print the element that p indicates, increase the value of
p, and continue until we get to the last element of V.

• Iterators are particularly useful because vectors are dynamic.

cis15-spring2010-parsons-lectVI.3 7

• What do we mean by dynamic?

• Well, this:

V.push_back(10);

adds the element 10 to the end of the vector, and this:

V.pop_back();

removes the last element from the vector.

• Accessing using iterators and V.begin() and V.end() saves
us from having to keep track of the length of the vector.

cis15-spring2010-parsons-lectVI.3 8

• Also worth noting are:

– V.size() which gives the size of the vector;

– V.empty() which returns true if V doesn’t have any
elements;

– V.front() which returns the first element in the vector.

– V.end() which returns the last element in the vector.

• So we can write:

while(!V.empty()){
cout << "Size is " << V.size() << " ";
cout << "First element is " << V.front() << " ";
cout << "Last element is " << V.back() << endl;
V.pop_back();

}

• I always think this lends itself to a recursive approach.

cis15-spring2010-parsons-lectVI.3 9

• There are many other functions for vector, but we will just look
at some variations on the constructor which can be useful.

• Remember we started with:

vector<int> V(10);

which created a vector V with 10 unspecified elements.

• We also have:

vector<int> W(10, 20);

which creates a vector W and instantiates it with 10 copies ofthe
integer 20.

and

vector<int> X(V.begin(), V.end());

which creates a vector X and instantiates it with the contents of V
between V.begin() and V.end().

cis15-spring2010-parsons-lectVI.3 10

Deque

• A deque is another sequence container.

• You can think of it as an extension of a vector.

• With a vector you can only add items at the end.

• With a deque you can add items at either end,

• (There is a price to pay for that — you can’t use the index
operator [] with a deque.)

• The following examples are all in deque.cpp.

cis15-spring2010-parsons-lectVI.3 11

• Here’s code for adding elements to a deque:

for (int i=0; i<10; i++) {
DQ.push_front(i * 10);

}
for (int i=0; i<10; i++) {

DQ.push_back(i + 10);
}

• And code for taking elements from a deque:

DQ.pop_front();
DQ.pop_back();

• As with vector we have empty()

cis15-spring2010-parsons-lectVI.3 12

• We can also grap items in the same kind of way as using []
using the at() function:

DQ.at(10) = 100;

for (int i=0; i<18; i++) {
cout << DQ.at(i) << " ";

}

• Using this function means you can’t read or write outside the
bounds of the deque.

• If you try, you get a message along the lines of:

terminate called after throwing an instance
of ’std::out_of_range’

what(): deque::_M_range_check

cis15-spring2010-parsons-lectVI.3 13

• In fact, though we didn’t mention it, at() is part of vector as
well.

cis15-spring2010-parsons-lectVI.3 14

List

• The list container is similar to a deque but it also includes a
sorting function

list<int> L;
:
L.sort();

• Look at the examples in list.cpp.

cis15-spring2010-parsons-lectVI.3 15

Associative containers

• We’ll now look at the associative containers set and multiset.

• A set stores a group of unique values according to some
ordering relationship

• It’s kind of like enum, except you don’t have to specify the
values of each of the elements in the data structure

• A multiset is like a set with duplicates (i.e., non-unique
elements)

• Example on the next slide.

cis15-spring2010-parsons-lectVI.3 16

#include <iostream>
#include <set>
using namespace std;

int main() {
set<int> S;
for (int i=0; i<10; i++) {
S.insert(i * 10);

}
set<int>::iterator p;
for (p = S.begin(); p != S.end(); p++) {
cout << *p << " ";

}
cout << endl;

}

cis15-spring2010-parsons-lectVI.3 17

Map and multimap

• Two more associative containers.

• A map stores elements in “key-value” pairs

• Instead of using numeric indexes, like arrays or vectors, to access
elements, the “key” is used as a symbolic index

• With a map, each key and value pair is unique

• With a multimap, a single key may correspond to multiple
values

• Example on the next slide.

cis15-spring2010-parsons-lectVI.3 18

#include <iostream>
#include <map>
using namespace std;

struct strCmp {
bool operator()(const char* s1, const char* s2) const {
return(strcmp(s1, s2) < 0);

}
};

int main() {
map<const char *, int, strCmp> M;
M["suz"] = 19;
M["alex"] = 12;
M["jen"] = 15;
map<const char *,int, strCmp>::iterator p;
for (p = M.begin(); p != M.end(); p++) {
cout << "(" << p->first << "," << p->second << ")\t";

}
cout << endl;

}

cis15-spring2010-parsons-lectVI.3 19

• And the output is:

(alex,12) (jen,15) (suz,19)

• Note that elements are listed in alphabetical order based on the
key value.

• This is because of the strCmp comparison operator that is part
of the map definition.

• If we reversed the operator, e.g., changed

return(strcmp(s1, s2) < 0);

to

return(strcmp(s2, s1) < 0);

then the output would be reversed:

(suz,19) (jen,15) (alex,12)

cis15-spring2010-parsons-lectVI.3 20

More on Iterators

• An iterator is like a pointer

• But they are a bit different.

• Instead of always advancing by either incrementing or
decrementing using memory addresses, iterators move around
(forward or backward one element or jumping directly to a
particular element).

• The way they do this depends on the type of iterator as well as
the type of class they are iterating through.

cis15-spring2010-parsons-lectVI.3 21

• Compare:

int i;
for (i=0; i<N; ++i) {

...
}

with:

vector<int>::iterator p;
for (p=v.begin(); p != v.end(); ++p) {

...
}

cis15-spring2010-parsons-lectVI.3 22

• There are different kinds of iterators:

– input_iterator
reads values with forward movement can be incremented,
compared, and dereferenced

– output_iterator
writes values with forward movement can be incremented
and dereferenced

– forward_iterator
reads or writes values with forward movement combine the
functionality of input and output iterators with the ability to
store the iterators value

cis15-spring2010-parsons-lectVI.3 23

– bidirectional_iterator
reads and writes values with forward and backward
movement like forward iterators, but can also be incremented
and decremented

– random_iterator
reads and writes values with random access

– reverse_iterator
either a random iterator or a bidirectional iterator that moves
in reverse direction

– All containers have a shared interface (i.e., the public
functions); these are:

∗ Constructor and destructor

∗ Functions to access, insert and delete elements

∗ Iterators (which we will get to later)

cis15-spring2010-parsons-lectVI.3 24

Container adaptors

• Container adaptors:

– stack,

– queue and

– priority_queue

are containers that are adapted from sequence containers
(vector, list and deque)

• They define how elements are added and removed

cis15-spring2010-parsons-lectVI.3 25

Stack

• A stack is a “LIFO” data structure: “last in, first out”

• Which means that items are added to the front of the stack and
also removed from the front of the stack.

• We have talked about stacks in the past this semester and used
the analogy of a stack of plates in a cafeteria: new plates are
added to the top; plates are also removed from the top

• The STL stack has the following members:

constructor
empty()
pop()
push()
size()
top()

cis15-spring2010-parsons-lectVI.3 26

Queue

• A queue is a “FIFO” data structure: “first in, first out”

• Which means that items are added to the back of the queue and
are removed from the front of the queue

• A queue is just like a conventional line (of humans) (also called a
“queue” if you live in the UK)

• Has the following members:

constructor
back()
empty()
front()
pop()
push()
size()

cis15-spring2010-parsons-lectVI.3 27

Priority Queue

• Like a queue, except that the items are ordered according to a
comparison operator that is specified when a priority queue
object is instantiated

• So elements are inserted in order.

• Has the following members:

constructor
empty()
pop()
push()
size()
top()

cis15-spring2010-parsons-lectVI.3 28

Summary

• This lecture focussed on the C++ Standard Template Library.

• We looked at different container template classes.

• All these containers have a shared interface (i.e., the public
functions); these are:

– Constructor and destructor

– Functions to access, insert and delete elements

– Iterators

cis15-spring2010-parsons-lectVI.3 29

