THE STANDARD TEMPLATE LIBRARY

Today

® Today we delve deeper into the use of templates with a look at
the Standard Template Library.

* In the same way that the standard library adds functionality to
the basic C/C++ language , the template library provides
templates.

® Both save you having to write lots of code from scratch.

e Good references are:

—http://ww. | earncpp. coml cpp-tutori al
—http://ww. cpl uspl us. coml doc/tutori al
—http://ww. cppreference. com i ndex. htn

® You can also look at chapters 6 and 7 in the Pohl textbook.

cis15-spring2010-parsons-lectV1.3 2

Standard Template Library

® The STL or standard template library is a collection of useful
templates that are part of the C++ standard namespace

e In order to use each template in the STL, you need to include the
appropriate header file

e For example, in order to use the vect or template, you need to
do:

#i ncl ude <vector>
usi ng nanmespace std;

e The STL supports a variety of data structures and numerical
algorithmes.

cis15-spring2010-parsons-lectVI1.3 3

Containers

® Containers are classes that store groups of like elements.
¢ Kind of like fancy, more capable arrays
® There are two types of containers:

— sequence containers
which are: vect or, | | st, deque

— associative containers
which are: set , nul ti set, map nmul ti map and bi t set

e We will look at both of these kinds of container.

cis15-spring2010-parsons-lectVI1.3

Vectors

e Avect or is a sequence container that is a lot like an array
® But it can also handle dynamic expansion
— Rather like the st ri ng class can
® This means that it won’t overflow
e [t can be navigated in a number of ways:

— using an index (like an array);
— using an iterator (more on that ahead).

® [t can also be accessed like a stack.

cis15-spring2010-parsons-lectV1.3

® Here’s a first example:

vect or<i nt > V(10);

for (int i=0; i<10; i++) {
V[i] =i * 10;

}

e We declare V to be a vector with 10 elements.

e We then use an index, just like for an array, to set every element
of the vector.

e (This and other examples can be found in vect or . cpp.

cis15-spring2010-parsons-lectVI1.3

® Now let’s look at accessing it using an iterator:

vector<int>::iterator p;
for (p = V.begin(); p!'= V.end(); p++) {

cout << »p << ;
}

® We declare p to be an iterator for a vector of integers.
® An iterator is somewhat like a pointer.
e We start p with the location of the first element in V.

® Then we print the element that p indicates, increase the value of
p, and continue until we get to the last element of V.

e [terators are particularly useful because vectors are dynamic.

cis15-spring2010-parsons-lectV1.3

® What do we mean by dynamic?
e Well, this:

V. push_back(10);
adds the element 10 to the end of the vector, and this:
V. pop_back();

removes the last element from the vector.

® Accessing using iterators and V. begi n() and V. end() saves
us from having to keep track of the length of the vector.

cis15-spring2010-parsons-lectVI1.3

¢ Also worth noting are:

— V. si ze() which gives the size of the vector;

— V. enpt y() which returns true if V doesn’t have any
elements;

— V. front () which returns the first element in the vector.
— V. end() which returns the last element in the vector.

® SO we can write:

whi l e(!V.empty()){
cout << "Size is " << V.size() << " ";
cout << "First element is " << V.front() << " ";
cout << "Last elenent is " << V.back() << endl;
V. pop_back();

}

e [always think this lends itself to a recursive approach.

cis15-spring2010-parsons-lectVI1.3

® There are many other functions for vect or , but we will just look
at some variations on the constructor which can be useful.

® Remember we started with:
vector<int> V(10);
which created a vector V with 10 unspecified elements.
e We also have:
vector<int> W10, 20);

which creates a vector Wand instantiates it with 10 copies ofthe
integer 20.

and
vector<int> X(V.begin(), V.end());

which creates a vector X and instantiates it with the contents of V
between V. begi n() and V. end() .

cis15-spring2010-parsons-lectV1.3 10

Deque

e A deque is another sequence container.

® You can think of it as an extension of a vector.

e With a vector you can only add items at the end.
e With a deque you can add items at either end,

® (There is a price to pay for that — you can’t use the index
operator [] with a deque.)

® The following examples are all in deque. cpp.

cis15-spring2010-parsons-lectVI1.3 11

® Here’s code for adding elements to a deque:

for (int i=0; i<10; i++) {
DQ push _front(i * 10);

}

for (int i=0; i<10; i++) {
DQ push_back(i + 10);

}

e And code for taking elements from a deque:

DQ. pop_front();
DQ pop_back();

e As with vector we have enpt y()

cis15-spring2010-parsons-lectV1.3

12

® We can also grap items in the same kind of way as using []
using the at () function:

DQ at (10) = 100;

for (int i=0; 1<18; i++) {
cout << DQat (i) << " ",
}

¢ Using this function means you can’t read or write outside the
bounds of the deque.

* If you try, you get a message along the lines of:

termnate called after throwi ng an instance
of ’std::out_of range’
what (): deque:: Mrange _check

cis15-spring2010-parsons-lectV1.3

13

* In fact, though we didn’t mention it, at () is part of vect or as
well.

cis15-spring2010-parsons-lectV1.3

14

List

® Thel | st container is similar to a deque but it also includes a
sorting function

| i st<int> L;

L.sort();

® [ook at the examplesin | i st. cpp.

cis15-spring2010-parsons-lectV1.3 15

Associative containers

e We'll now look at the associative containers set and nul ti set .

e A set stores a group of unique values according to some
ordering relationship

e [t's kind of like enum except you don’t have to specity the
values of each of the elements in the data structure

e Anul tiset islike a set with duplicates (i.e., non-unique
elements)

e Example on the next slide.

cis15-spring2010-parsons-lectVI1.3

16

#i ncl ude <i ostreanp
#i ncl ude <set>
usi ng nanespace std;

int main() {

set<int> S

for (int i=0; i<10; i++) {
S.insert(i » 10);

}

set<int>.:iterator p;

for (p =S begin(); p!= S end();
cout << *xp << " ",

}

cout << endl;

cis15-spring2010-parsons-lectVI1.3

p++) {

17

Map and multimap

e Two more associative containers.
® A map stores elements in “key-value” pairs

* Instead of using numeric indexes, like arrays or vectors, to access
elements, the “key” is used as a symbolic index

e With a map, each key and value pair is unique

e With a nul ti map, a single key may correspond to multiple
values

e Example on the next slide.

cis15-spring2010-parsons-lectVI1.3 18

#i ncl ude <i ostreanp
#i ncl ude <map>
usi ng nanespace std;

struct strCmp {

bool operator()(const charx sl1, const char* s2) const {

return(strcnp(sl1, s2) <0);

}
}i

int main() {

map<const char *, int, strCmp> M

M"suz"] = 19;

M"al ex"] = 12;

M"jen"] = 15;

map<const char =*,int, strChp>::iterator p;
for (p = Mbegin(); p!= Mend(); p+t+) {

cout << "(" << p->first << "," << p->second << ")\t";

}

cout << endl;

cis15-spring2010-parsons-lectV1.3

19

® And the output is:
(al ex, 12) (j en, 15) (suz, 19)
® Note that elements are listed in alphabetical order based on the

key value.

® This is because of the st r Cnhp comparison operator that is part
of the map definition.

e If we reversed the operator, e.g., changed
return(strcnp(sl1, s2) <0);
to
return(strcnp(s2, s1) <0);
then the output would be reversed:

(suz, 19) (] en, 15) (al ex, 12)

cis15-spring2010-parsons-lectV1.3 20

More on Iterators

® An iterator is like a pointer
® But they are a bit different.

* Instead of always advancing by either incrementing or
decrementing using memory addresses, iterators move around
(forward or backward one element or jumping directly to a
particular element).

® The way they do this depends on the type of iterator as well as
the type of class they are iterating through.

cis15-spring2010-parsons-lectVI1.3 21

e Compare:

Int 1
for (1=0; Ii<N ++i) {

}
with:

vector<int>::iterator p;
for (p=v.begin(); p !=v.end(); ++p) {

}

cis15-spring2010-parsons-lectVI1.3 22

® There are different kinds of iterators:

—input iterator
reads values with forward movement can be incremented,
compared, and dereferenced

—out put _iterator
writes values with forward movement can be incremented
and dereferenced

—forward iterator
reads or writes values with forward movement combine the
functionality of input and output iterators with the ability to
store the iterators value

cis15-spring2010-parsons-lectV1.3 23

—bidirectional iterator
reads and writes values with forward and backward
movement like forward iterators, but can also be incremented
and decremented

—random.terator
reads and writes values with random access

—reverse iterator
either a random iterator or a bidirectional iterator that moves
in reverse direction

— All containers have a shared interface (i.e., the public
functions); these are:

* Constructor and destructor
* Functions to access, insert and delete elements
* Iterators (which we will get to later)

cis15-spring2010-parsons-lectV1.3 24

Container adaptors

e Container adaptors:

— st ack,
— queue and
—priority_queue

are containers that are adapted from sequence containers
(vector,list and deque)

® They define how elements are added and removed

cis15-spring2010-parsons-lectV1.3

25

Stack
e A stack is a “LIFO” data structure: “last in, first out”

e Which means that items are added to the front of the stack and
also removed from the front of the stack.

e We have talked about stacks in the past this semester and used
the analogy of a stack of plates in a cafeteria: new plates are
added to the top; plates are also removed from the top

® The STL stack has the following members:

constructor
enpt y()
pop()

push()
si ze()

top()

cis15-spring2010-parsons-lectV1.3 26

Queue

® A queue is a “FIFO” data structure: “first in, first out”

® Which means that items are added to the back of the queue and
are removed from the front of the queue

® A queue is just like a conventional line (of humans) (also called a

“queue” if you live in the UK)

® Has the following members:

construct or
back()

enpt y()
front()

pop()
push()
si ze()

cis15-spring2010-parsons-lectVI1.3

27

Priority Queue

¢ Like a queue, except that the items are ordered according to a
comparison operator that is specified when a priority queue
object is instantiated

® So elements are inserted in order.

® Has the following members:

constructor
enpt y()
pop()

push()
si ze()

top()

cis15-spring2010-parsons-lectV1.3

28

Summary

® This lecture focussed on the C++ Standard Template Library.
e We looked at different container template classes.

e All these containers have a shared interface (i.e., the public
functions); these are:

— Constructor and destructor
— Functions to access, insert and delete elements
— [terators

cis15-spring2010-parsons-lectVI1.3 29

