
STL ALGORITHMS

Today

• Today we look more at the Standard Template Library.

• First we will look at how the STL implements stacks, queues and
priority queues.

• Then we’ll look at some algorithms that the STL provides for use
with its templates.

• Good references continue to be:

– http://www.learncpp.com/cpp-tutorial

– http://www.cplusplus.com/doc/tutorial

– http://www.cppreference.com/index.html

• This material isn’t covered in the textbook.

cis15-spring2010-parsons-lectVI.4 2

Container adaptors

• Container adaptors implement other commonly used kind of
datastructure:

– stack,

– queue and

– priority_queue

are containers that are adapted from sequence containers
(vector, list and deque)

• They define how elements are added and removed

• They canot be accessed using iterators.

cis15-spring2010-parsons-lectVI.4 3

Stack

• A stack is a “LIFO” data structure: “last in, first out”

• Which means that items are added to the front of the stack and
also removed from the front of the stack.

• We have talked about stacks in the past this semester and used
the analogy of a stack of plates in a cafeteria: new plates are
added to the top; plates are also removed from the top

• The STL stack has the following members:

constructor
empty()
pop()
push()
size()
top()

cis15-spring2010-parsons-lectVI.4 4

• Here is an example of using a stack from adaptor.cpp.

stack<int> myStack;

for (int i=0; i<10; i++) {
r = rand() % 100;
myStack.push(r);

}

while(!myStack.empty()) {
cout << myStack.top() << " ";
myStack.pop();

}
cout << endl;

cis15-spring2010-parsons-lectVI.4 5

Queue

• A queue is a “FIFO” data structure: “first in, first out”

• Which means that items are added to the back of the queue and
are removed from the front of the queue

• A queue is just like a conventional line (of humans) (also called a
“queue” if you live in the UK)

• Has the following members:

constructor
back()
empty()
front()
pop()
push()
size()

cis15-spring2010-parsons-lectVI.4 6

• Here is an example of using a queue from adaptor.cpp.

queue<int> myQueue;

for (int i=0; i<10; i++) {
r = rand() % 100;
myQueue.push(r);

}

while(!myQueue.empty()) {
cout << myQueue.front() << " ";
myQueue.pop();

}
cout << endl;

cis15-spring2010-parsons-lectVI.4 7

Priority Queue

• Like a queue, except that the items are ordered according to a
comparison operator that is specified when a priority queue
object is instantiated.

• So elements are inserted in order.

• Has the following members:

constructor
empty()
pop()
push()
size()
top()

cis15-spring2010-parsons-lectVI.4 8

• Here is an example of using a priority queue from
adaptor.cpp.

priority_queue<int> myPriority;

for (int i=0; i<10; i++) {
r = rand() % 100;
myPriority.push(r);

}

while(!myPriority.empty()) {
cout << myPriority.top() << " ";
myPriority.pop();

}
cout << endl;

cis15-spring2010-parsons-lectVI.4 9

• If we push the same set of random numbers into the three
containers, we will get something like:

21 49 92 86 35 93 15 77 86 83
83 86 77 15 93 35 86 92 49 21
93 92 86 86 83 77 49 35 21 15

• So the queue and the stack output the numbers in the opposite
order and the priority queue has automatically sorted them.

cis15-spring2010-parsons-lectVI.4 10

STL algorithms

• The STL also contains some useful algorithms that can be used
on containers.

• The require the containers to be accessible by iterators, so they
won’t work on stack, queue, or priority_queue.

• You can find all these examples in the file algorithms.cpp.

cis15-spring2010-parsons-lectVI.4 11

• There is a set of algorithms that just look stuff up in the container.

• For example count and find

cout << "The number 86 appears: "
<< count(theVector.begin(), theVector.end(), 86)
<< " times" << endl;

cout << "The number following the "
<< "first occurance of 86 is: ";

p = find(theVector.begin(), theVector.end(), 86);
p++;
cout << *p << endl;

• As you can see, count counts the number of instances of its third
argument, and find returns an iterator with a location.

cis15-spring2010-parsons-lectVI.4 12

• With the same vector as above:

21 49 92 86 35 93 15 77 86 83

this will produce:

The number 86 appears: 2 times
The number following the first

occurance of 86 is: 77

• (Note that the spacing was altered so that the text would fit on
the page).

cis15-spring2010-parsons-lectVI.4 13

• We can use any range, indicated by iterators, within a vector, as
input to the algorithms.

• For example:

q = p;
s = theVector.end() - 1;

cout << "The number 86 appears "
<< count(q, s, 86)
<< " times in the subsequence" << endl;

cout << "The number following the first occurance"
<< " of 86 in the subsequence is: ";

p = find(q, s, 86);
p++;
cout << *p << endl;

cis15-spring2010-parsons-lectVI.4 14

• This time the output will be:

The number 86 appears 1 times in the subsequence
The number following the first occurance of 86

in the subsequence is: 92

cis15-spring2010-parsons-lectVI.4 15

• The function reverse reverses the contents of the container
between the two iterators that we give it as an argument:

reverse(theVector.begin(), theVector.end());
cout << "After reversal, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

reverse(q,s);
cout << "After partial re-reversal, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

cis15-spring2010-parsons-lectVI.4 16

• Here we will get:

After reversal, we have:
21 49 92 86 35 93 15 77 86 83
After partial re-reversal, we have:
21 49 86 77 15 93 35 86 92 83

• Note how the positions of q and s were changed by the reversal.

cis15-spring2010-parsons-lectVI.4 17

• We can also sort

sort(theVector.begin(), theVector.end());
cout << "After sorting, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

and do a random_shuffle

random_shuffle(q, s);
cout << "After randomly shuffling part, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

cis15-spring2010-parsons-lectVI.4 18

• Giving us:

After sorting, we have:
15 21 35 49 77 83 86 86 92 93
After randomly shuffling part, we have:
15 21 92 77 83 35 86 86 49 93

• Naturally we can also do these operations on any range we like.

cis15-spring2010-parsons-lectVI.4 19

• The last two functions we will look at are rotate and
transform.

• rotate takes three arguments. The first two define the range we
will rotate.

• The last argument is another iterator which identifies the point
that will, after rotation, be at the first position in the range.

• The rest of the range will be moved so that the items are still in
the same order relative to each other as before.

• It is easier to understand this with an example.

cis15-spring2010-parsons-lectVI.4 20

• This code

sort(theVector.begin(), theVector.end());
cout << "After resorting, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

s = s - 1;
rotate(theVector.begin(), theVector.end(), s);
cout << "After rotating, we have: " << endl;
for (p = theVector.begin(); p != theVector.end(); p++) {

cout << *p << " ";
}
cout << endl;

cis15-spring2010-parsons-lectVI.4 21

generates this:

After resorting, we have:
15 21 35 49 77 83 86 86 92 93
After rotating, we have:
35 49 77 83 86 86 92 93 15 21

since s identifies the number in the third place to be the one
about which the vector is rotated.

cis15-spring2010-parsons-lectVI.4 22

• transform applies a function to every element in the range.

• So with a function doubleIt that doubles its argument, this:

vector<int> theOther;
theOther.resize(theVector.size());

transform(theVector.begin(),theVector.end(),
theOther.begin(),doubleIt);

cout << "After transforming, we have: " << endl;
for (p = theOther.begin(); p != theOther.end(); p++) {

cout << *p << " ";
}
cout << endl;

generates:

After transforming, we have:
70 98 154 166 172 172 184 186 30 42

cis15-spring2010-parsons-lectVI.4 23

• There are a few things to notice here.

• First, transform takes the result of applying the function and
puts it in a separate container, identified by the third argument.

• In fact the third argument identifies the position in the container
at which the results should start.

• You have to make sure there is enough space in the container
you are copying into.

• The use of resize is an easy way to do this.

• This line

theOther.resize(theVector.size());

finds the size of theVector and then alters the size of
theOther to match.

cis15-spring2010-parsons-lectVI.4 24

Summary

• This lecture focussed on more of the C++ Standard Template
Library.

• We started by looking at container adapters, stack, queue and
priority_queue.

• Then we took a quick look at some of the STL algorithms.

• There are many more that we did not have time to look at, but
what we saw was pretty representative.

• Hopefully this suggested some of the work that the STL can save
you doing as you write more complex C++ programs.

cis15-spring2010-parsons-lectVI.4 25

