
STRINGS AND FILES

Today

• These notes revise a couple of things that might come in handy:

– How strings are handled in C++

– How files are handled in C++

• This material is taken from Pohl, Chapter 9 and Appendix C.

cis15-fall2009-parsons-saf 2

Strings
• To deal with strings, we need to add:

#include<string>

at the start of our program.

• Despite what some textbooks say:

#include<string.h>

is out of date.

• If you want to use the (obselete) way that strings were handled
in C (called C-strings) you can use:

#include<cstring>

but my advice is don’t.

• Everything you can do with C-strings you can do with strings,
and if you need a C-string for compatibility, there’s a function on
strings which will generate the equivalent C-string.

cis15-fall2009-parsons-saf 3

• With the header in place, we can define variables whose type is
string:

string s1 = "Hello";
string s2 = "Simon";
string s3, s4;

• This defines s1 to be a string variable whose value is the word
Hello, and s2 to be a string variable who value is the word
Simon.

• It also defines s3 and s4 to be strings, but does not give them a
value.

cis15-fall2009-parsons-saf 4

• Since s1, s2, and s3 are variables, we can do a lot of the kinds of
things we can do to other variables to them.

• We can assign values to them and print their values out.

• For example:

s3 = s2;
cout << s3;

will generate:

Simon

cis15-fall2009-parsons-saf 5

Concatenation

• One operation that is specific to strings is concatenation

• For example:

s3 = s1 + s2;
cout << s3;

• The first line tells C++ to concatenate s1 and s2 and assign the
result to s3.

• Thus s3 now has the value of s1 followed by the value of s2.

cis15-fall2009-parsons-saf 6

• When we print, we get:

HelloSimon

• There is no space because neither s1 or s2 has a space.

s3 = s1 + " " + s2;
cout << s3

would produce:

Hello Simon

as would

s1 += " " + s2;
cout << s2

cis15-fall2009-parsons-saf 7

Member functions

• In C++ a string is an instance of the class string.

• Thus:

string s1;

is just like

point p;

• The class string comes with a number of member functions
some of whcih we’ll explore here.

• For others, see the definition of the class string.

cis15-fall2009-parsons-saf 8

• One of the most useful member functions is the function [].

• This allows access to the characters that make up the string.

string message = "Greetings!"
char ch;

ch = message[4];
cout << ch;

will print out

t

• As with arrays, we start counting from 0.

• This will look familiar to those who were introduced to strings
as arrays of characters.

• Other member functions of strings will be less familiar.

cis15-fall2009-parsons-saf 9

• An obvious thing to find out about a string is how long it is.

int len;
string message;

len = message.length();

will do this for the string message.

• So will:

len = message.size();

• So far as I can tell, length and size give exactly the same thing.

cis15-fall2009-parsons-saf 10

• In fact, len shouldn’t be an int.

• We should really use:

string::size_type len;

• In other words, what gets returned by size and length is a
value of type string::size type.

cis15-fall2009-parsons-saf 11

Finding things in strings

• Often we want to look for things in a string.

• C++ has a member function to do this:

string::size_type pos;
pos = message.find("hello", 0);

pos gives the location of the start of the first occurence of the
string hello.

The 0 says to start looking from the first character in dna. (Since
the string is an array, the first character is numbered 0).

• We can also look for a single character:

pos = message.find(’h’, 0);

cis15-fall2009-parsons-saf 12

• If message.find doesn’t find the thing we are looking for, it
returns the value dna.npos.

• This gives us a neat way to search for things in message.

• We keep looking until we get message.npos.

• So, to count how many times we have g in message, we would
do this:

int countG = 0;

pos = message.find(’g’,0);
while (pos != dna.npos)
{

countG++;
pos = message.find(’g’, pos + 1);

}

cis15-fall2009-parsons-saf 13

• This code works as follows:

1. We look for g starting at the beginning of the string.

2. If we don’t get npos we have found a g, so increase the
counter.

3. Look again, starting with the character just after the one you
just found.

4. Go to 2.

• This is a common way of using a while loop.

• We’ll see later how to use it to read a file.

cis15-fall2009-parsons-saf 14

Replacing part of a string

• If we want to swap one bit of a string for another, we can use
replace.

• For example:

message.replace(7, 4, "gbye");

will replace the 4 characters that start in place 7 of the string
mesage with the string gbye.

• This is fine if you want to swap gbye for hola, but is no good if
you want to take out four characters and put in three, or take out
three and put in four.

cis15-fall2009-parsons-saf 15

• To swap two bits of a string that aren’t the same length, we have
to first erase one and then insert another.

• For example:

message.erase(7, 4);
message.insert(7, "adieu");

will remove the four characters of message that start with the
character in place number seven, and then insert the string
adieu at the same place.

cis15-fall2009-parsons-saf 16

Reading in strings

• One way to read in a string from the user is

cin >> s3;

• This is fine if you want to read in strings like:

Hello

and

Roustabout

but no good if you want to read in:

What time is love?

cis15-fall2009-parsons-saf 17

• The problem is that cin stops reading at the first whitespace.

• So, if our program has:

cout << "Now type a string";
cin >> s3;

and the user types:

What time is love?

in response to the prompt, then s3will have the value What.

cis15-fall2009-parsons-saf 18

• The way around this problem is to use the function getline.

• There are two ways to use getline.

• Like this:

cout << "Now type a string";
getline(cin,s3);

it will read everything up to the point the user hits the return
key, and assign this to s3.

• This is fine for reading in What time is love?

cis15-fall2009-parsons-saf 19

• We can also call getline with a third parameter.

• This parameter is a character, called a delimiter, which tells
getline when to stop reading.

• If our program has:

cout << "Now type a string";
getline(cin,s3,’,’);
getline(cin,s4,’.’);

and the user types:

First we take Manhattan, then we take Berlin.

then . . .

cis15-fall2009-parsons-saf 20

• s3 will have the value

First we take Manhattan

and s4 will have the value

then we take Berlin

• Note that the delimiters are not read in, and so don’t end up in
either string.

cis15-fall2009-parsons-saf 21

Files

• File handling involves three steps:

1. Opening the file (for reading or writing)

2. Reading from or writing to the file

3. Closing the file

• Files in C++ are sequential access.

• Think of a cursor that sits at a position in the file;

• With each read and write operation, you move that cursor’s
position in the file

cis15-fall2009-parsons-saf 22

• The last position in the file is called the “end-of-file”, which is
typically abbreviated as eof

• All the functions described on the next few slides are defined in
the either the <ifstream> header file (for files you want to read
from) or the <ofstream> header file (for files you want to write
to)

cis15-fall2009-parsons-saf 23

Opening a file for reading

• First you have to define a variable of type ifstream

• This “input file” variable will act like the cursor in the file and
will point sequentially from one character in the file to the next,
as you read characters from the file

• Then you have to open the file:

ifstream inFile; // declare input file variable
inFile.open("myfile.dat", ios::in); // open the file

• You should check to make sure the file was opened successfully

cis15-fall2009-parsons-saf 24

• If it was, then inFile will be assigned a number greater than 0.

• If there was an error, then inFile will be set to 0, which can also
be evaluated as the boolean value false; so you can test like
this:

if (! inFile) {
cout << "error opening input file!\n";
exit(1); // exit the program

}

• Note that the method ifstream.open() takes two arguments:

– filename: a string containing the name of the file you want
to open; this file is in the current working directory or else
you have to include a full path specification

– mode: which is set to ios::in when opening a file for input

cis15-fall2009-parsons-saf 25

Reading from a file.
• Once the file is open, you can read from it

• You read from it in almost the same way that you read from the
keyboard

• When you read from the keyboard, you use cin >> ...

• When you read from your input file, you use inFile >> ...

• Here is an example:

int x, y;
inFile >> x;
inFile >> y;

• Here is another example:

int x, y;
inFile >> x >> y;

cis15-fall2009-parsons-saf 26

• When reading from a file, you will need to check to make sure
you have not read past the end of the file.

• Do this by calling:

inFile.eof() which will:

– return true when you have gotten to the end of the file (i.e.,
read everything in the file)

– return false when there is still something to read inside the
file.

• For example:

while (! inFile.eof()) {
inFile >> x;
cout << "x = " << x << endl;

} // end of while loop

cis15-fall2009-parsons-saf 27

Opening a file for writing.

• first you have to define a variable of type ofstream;
this “output file” variable will act like the cursor in the file and
will point to the end of the file, advancing as you write
characters to the file

• then you have to open the file:

ofstream outFile; // declare output file variable
outFile.open("myfile.dat", ios::out); // open the file

• You should check to make sure the file was opened successfully.

• If it was, then outFilewill be assigned a number greater than 0.

• If there was an error, then outFile will be set to 0, which can
also be evaluated as the boolean value false;

cis15-fall2009-parsons-saf 28

• You can test like this:

if (! outFile) {
cout << "error opening output file!\n";
exit(1); // exit the program

}

• Note that the method ofstream.open() takes two arguments:

– filename: a string containing the name of the file you want
to open; this file is in the current working directory or else
you have to include a full path specification

– mode: which is set to ios::out when opening a file for
output

• This is rather like handling an input file, no?

cis15-fall2009-parsons-saf 29

Writing to a file.

• Once the file is open, you can write to it

• You write to it in almost the same way that you write to the
screen

• When you write to the screen, you use cout << ...

• When you write to your output file, you use outFile << ...

• Here is an example:

outFile << "hello world!\n";

• Here is another example:

int x;
outFile << "x = " << x << endl;

cis15-fall2009-parsons-saf 30

Closing a file.

• When you are done reading from or writing to a file, you need to
close the file

• You do this using the close() function, which is part of both
ifstream and ofstream

• So, to close a file that you opened for reading, you have do this:

ifstream.close(); // close input file

• And, to close a file that you opened for writing, you have do this:

ofstream.close(); // close output file

• That’s all!

cis15-fall2009-parsons-saf 31

Summary

• These slides briefly recapped:

– Strings

– Files

cis15-fall2009-parsons-saf 32

