
ALGORITHMIC THINKING

Overview

• Finish HTML concepts from last class

• Introduce algorithmic thinking
• Algorithm examples

• Reading: Reed, Chapter 8.

cis1.0-fall2006-parsons-lectB3 2

What is an algorithm

• “A step-by-step sequence of instructions for carrying out some
task”

• Examples of algorithms outside of computing:

– Cooking recipes
– Dance steps
– Proofs (mathematical or logical)
– Solutions to mathematical problems

• In computing, algorithms are synonymous with problem solving.

cis1.0-fall2006-parsons-lectB3 3

• How to Solve It, by George Polya

1. understand the problem
2. devise a plan
3. carry out your plan
4. examine the solution

• Example: find the oldest person in the class (besides me)

cis1.0-fall2006-parsons-lectB3 4



Analysis of algorithms

• Often, there is more than one way to solve a problem, i.e., there
exists more than one algorithm for addressing any task

• Some algorithms are better than others
• Which features of the algorithm are important?

– Speed (number of steps)
– Memory (size of work space; how much scrap paper do you

need?)
– Complexity (can others understand it?)
– Parallelism (can you do more than one step at once?)

cis1.0-fall2006-parsons-lectB3 5

• In computer science analysing the speed of an algorithm is
important.

• Big-Oh notation

– O(N) means solution time is proportional to the size of the
problem (N)
∗ For example, N might be the size of the class in our

age-finding example.
– O(log2N) means solution time is proportional to log2N

– O(N2) means solution time is proportional to log2N

• Which is better?

• See examples in Reed page 142

cis1.0-fall2006-parsons-lectB3 6

Classic algorithm example: search

• Sequential search

• Binary search
• Example: search the Manhattan phone book for “Al Pacino”.

– How many comparisons do you have to make in order to find
the entry you are looking for?

– Can you take advantage of the fact that the phone book is in
sorted order? (i.e., an “ordered list”)

– What would happen to your algorithm if the phone book
were in random order?

• Test for equality versus relativity—which will tell you more?
which will help you solve the problem more efficiently?

cis1.0-fall2006-parsons-lectB3 7

Algorithms and programming

• Programming languages provide a level of abstraction that is
more understandable to humans than binary machine language
(0′s and 1′s).

• Assembly languages (in the early 1950’s). provided abbreviations
for machine language instructions (like MOV , ADD, STO).

• High-level languages (introduced in the late 1950’s) provided more
“programmer-friendly” ways for humans to write computer
code (e.g., FORTRAN, LISP).

• The languages we will use in this course are all high-level.

cis1.0-fall2006-parsons-lectB3 8



Program translation

• Translates assembly or high-level languages into binary machine
language

• Translates source code into object code, also called machine code.
• Two methods:

– Interpretation
– Compilation

cis1.0-fall2006-parsons-lectB3 9

Interpretation

• Reads and translates statements one at a time;
• Doesn’t optimize across an entire program;

– No file of object code.

• Doesn’t store executable statements—just runs them;
• Error checking only happens at “run time”.

• Run-time can be slow, but there’s no “compile time”

cis1.0-fall2006-parsons-lectB3 10

Compilation

• Reads and translates entire program, and stores result as an
executable file;

• Can optimize;
• Can perform “compile time” error checking.

• Run-time is fast, but there is “compile time”.

cis1.0-fall2006-parsons-lectB3 11

Concepts

• Compile-time (noun): (same as “compilation”)
The process of compiling a program from an assembly or
high-level language into binary machine language and storing it
on the computer’s hard disk.

vs.
• Compile time (adj noun):

The amount of time it takes a compiler to translate (or “compile”)
a program.

cis1.0-fall2006-parsons-lectB3 12



• Run-time (noun): (same as “execution”)
The process of executing a compiled, stored program.

vs

• Run time (adj noun):
The amount of time it takes a program to run. This is where
Big-Oh comes in.

cis1.0-fall2006-parsons-lectB3 13

• Errors:
Can be found at compile-time and at run-time.

vs

• Error checking:
Is done at compile-time.

cis1.0-fall2006-parsons-lectB3 14

Summary

• This lecture introduced the idea of algorithms

– Sequences of instructions for sloving problems.

• We looked st some different algroithms for solving simple
problems.

• We considered how one compares one algorithm against another.

– Particularly with respect to speed.
• We also looked at some of the concepts involved in translating a

program from source code to object code.

cis1.0-fall2006-parsons-lectB3 15


