
VARIABLES, EXPRESSIONS AND FUNCTIONS

Today

• Answer more questions on:

– Midterm
– Homework for Unit B

• Talk about variable, expressions and functions in the context of
Netlogo and Javascript.

• Remind you to do the readings for Units D, E and F.

cis1.0-fall2006-parsons-lectE2 2

Any questions?

cis1.0-fall2006-parsons-lectE2 3

Netlogo as Computer Science

• Here’s a small piece of Netlogo:

to catch-sheep
let prey one-of (sheep-here

with [not grabbed?])
if prey != nobody
[set grabbed?-of prey true

ask prey [die]
set energy energy + wolf-gain-from-food

]
end

• What’s going on here?

cis1.0-fall2006-parsons-lectE2 4

What’s going on?

• This is something that we tell a wolf to do in the wolf/sheep
model.

• We tell it to make “prey” one of the sheep on the patch that the
wolf is on, one which is not “grabbed?”.

• If there is such a sheep, we tell the wolf:

– mark it as “grabbed?”
– make the sheep die
– get more energy from eating the sheep.

• What does the computer have to do to make this work?

cis1.0-fall2006-parsons-lectE2 5

Variables
• One thing we need is for each sheep to know whether it has been

“grabbed” or not.
• Why is this important?
• So that the sheep can tell, we give it a local variable:

sheep-own [grabbed?]

it is “local” because each sheep has its own — it is local to the
individual sheep.

• Since “grabbed?” belongs to the sheep, when the wolf changes
it, it has to use:

set grabbed?-of prey true

cis1.0-fall2006-parsons-lectE2 6

rather than:

set grabbed? true

cis1.0-fall2006-parsons-lectE2 7

Variables (more)

• We say that the scope of the variable grabbed? is the sheep.
• Because the variable is local, not every agent can access it.

• Indeed, only a single sheep can access each grabbed?.
• In constrast, this is a global variable:

globals [ticks]

• Since ticks is global, any agent can find out the value of ticks.

cis1.0-fall2006-parsons-lectE2 8

Variables (even more)

• Here are some more local variables:

turtles-own [energy]

patches-own [countdown]

• Other variables that you have come across are pcolor, xcor,
ycor, pxcor, pycor.

• In general, variables give us a way to store values.

cis1.0-fall2006-parsons-lectE2 9

Variables (last)

• Our example from wolf/sheep shows another kind of local
variable.

let prey one-of (sheep-here
with [not grabbed?])

• Here prey is a variable that is local to catch-sheep, rather
than to any turtle.

• The scope of prey is catch-sheep.
• Trying to access prey from outside catch-sheep will give an

error.

cis1.0-fall2006-parsons-lectE2 10

Expressions

• A variable gives us a way to store a value.

• An expression gives us a way to compute a value.
• The most common way we have used expressions is when we

have used set.

set energy energy + wolf-gain-from-food

cis1.0-fall2006-parsons-lectE2 11

Expressions (more)

• Wolf/sheep also gives us these examples

set pcolor green

set color black

rt random-float 50 - random-float 50

set energy random (2 * wolf-gain-from-food)

• What is going on in these?

cis1.0-fall2006-parsons-lectE2 12

Expressions (even more)

• set is an example of assignment. It changes the value of a
variable.

• set energy energy + wolf-gain-from-food

changes the value of the variable energy to be the old value of
energy plus the value of wolf-gain-from-food.

• set color black

changes the value of the variable color to be black

cis1.0-fall2006-parsons-lectE2 13

Expressions (last)

• rt random-float 50 - random-float 50

set energy random (2 * wolf-gain-from-food)

make use of functions, random and random-float

cis1.0-fall2006-parsons-lectE2 14

Functions (first time)

• Functions are bits of program that generate values.

• Since they generate values, it is natural that we use them along
with assignment.

• We use functions as a way to get abstraction.
• You can think of abstraction as “hiding the detail”.

• Rather than writing out the Netlogo code for generating a
random number every time that we want one, we just call
random.

• random is provided by the folk who wrote Netlogo, but you can
also write your own functions.

cis1.0-fall2006-parsons-lectE2 15

Procedures
• In fact we don’t write many of our own functions in Netlogo.
• We do write procedures. Procedures are bits of code that do

something:
• catch-sheep is a nice example.

to catch-sheep
let prey one-of (sheep-here

with [not grabbed?])
if prey != nobody
[set grabbed?-of prey true

ask prey [die]
set energy energy + wolf-gain-from-food

]
end

cis1.0-fall2006-parsons-lectE2 16

Procedures (more)

• A procedure starts with:

to name-of-procedure

and ends with

end

• In between, the procedure contains a list of instructions.
• These instructions are the steps in the algorithm that the

procedure uses.

cis1.0-fall2006-parsons-lectE2 17

Procedures (even more)
• You then call a procedure to make it execute.

to go
:
ask wolves [

move
set energy energy - 1
catch-sheep
reproduce-wolves
death]

:
end

• So one procedure is called by a second procedure which may be
called by a third procedure, and so on

cis1.0-fall2006-parsons-lectE2 18

Procedures (last)
• Procedures can take inputs:

to draw-polygon [num-sides len]
pd
repeat num-sides
[fd len
rt (360 / num-sides)]

end

• To call this procedure, you have to give it a number (an integer)
that sets the number of sides, and another number (integer) that
sets the length of the sides.

ask turtles [draw-polygon 8 who]

cis1.0-fall2006-parsons-lectE2 19

Functions (again)

• In Netlogo, functions are called reporters.

• They report values.
• They are defined and called much like procedures:

to-report absolute-value [number]
ifelse number >= 0
[report number]
[report 0 - number]

end

cis1.0-fall2006-parsons-lectE2 20

Summary

• This lecture talked about some of the computer science ideas
behind Netlogo.

– Variables
– Expressions
– Functions

cis1.0-fall2006-parsons-lectE2 21

