
PROCEDURES, FUNCTIONS AND CONTROL
STRUCTURES

Today

• Answer questions on:

– Midterm
– Homework for Unit B, Homework for Unit C

• Talk about variables, expressions and functions in the context of
Netlogo.

• Remind you to do the readings for Units D, E and F.

cis1.0-fall2006-parsons-lectE4 2

Any questions?

cis1.0-fall2006-parsons-lectE4 3

Functions (first time)

• Functions are bits of program that generate values.

• Since they generate values, it is natural that we use them along
with assignment.

• We use functions as a way to get abstraction.
• You can think of abstraction as “hiding the detail”.

• Rather than writing out the Netlogo code for generating a
random number every time that we want one, we just call
random.

• random is provided by the folk who wrote Netlogo, but you can
also write your own functions.

cis1.0-fall2006-parsons-lectE4 4

Procedures
• In fact we don’t write many of our own functions in Netlogo.
• We do write procedures. Procedures are bits of code that do

something:
• catch-sheep is a nice example.

to catch-sheep
let prey one-of (sheep-here

with [not grabbed?])
if prey != nobody
[set grabbed?-of prey true

ask prey [die]
set energy energy + wolf-gain-from-food

]
end

cis1.0-fall2006-parsons-lectE4 5

Procedures (more)

• A procedure starts with:

to name-of-procedure

and ends with

end

• In between, the procedure contains a list of instructions.
• These instructions are the steps in the algorithm that the

procedure uses.

cis1.0-fall2006-parsons-lectE4 6

Procedures (even more)
• You then call a procedure to make it execute.

to go
:
ask wolves [

move
set energy energy - 1
catch-sheep
reproduce-wolves
death]

:
end

• So one procedure is called by a second procedure which may be
called by a third procedure, and so on

cis1.0-fall2006-parsons-lectE4 7

Procedures (last)
• Procedures can take inputs:

to color-sheep [this-many]
repeat this-many
[

ask one-of sheep
[set color red]

]
end

• To call this procedure, you have to give it a number (an integer)
that sets the number of sheep to paint red:

color-sheep 10

cis1.0-fall2006-parsons-lectE4 8

Functions (again)

• In Netlogo, functions are called reporters.
• They report values.
• They are defined and called much like procedures:

to-report sheep-count
report count sheep

end

• The difference between writing functions and procedures is that:

– Functions start with to-report

– Functions us report to return a value.

cis1.0-fall2006-parsons-lectE4 9

Functions (more)

• The value you get from a function is like any other value.

• You can use it in an expression:

set energy energy + sheep-count

• Or, slightly more sensibly:

if sheep-count > 300
[stop]

if sheep-count > 300
[ask sheep [die]]

cis1.0-fall2006-parsons-lectE4 10

Functions (even more)

• Just like procedures, you can write functions that take inputs.

• Let’s imagine we want to limit the number of sheep that we
have.

to cull-sheep [how-many-to-kill]
repeat how-many-to-kill

[
ask one-of sheep

[die]
]

end

cis1.0-fall2006-parsons-lectE4 11

Functions (one last time)

• To use this procedure, we need to know how many sheep we
want to kill

• A function can tell us this:

to-report cull-this-many [limit-on-sheep]
report (count sheep) - limit-on-sheep

• We can then use the function and procedure together:

cull-sheep cull-this-many 200

cis1.0-fall2006-parsons-lectE4 12

Control structures (if)

• We use control structures in procedures to control what Netlogo
does.

• For example:

to kill-red-sheep
ask sheep

[
if (color = red)

[die]
]

end

cis1.0-fall2006-parsons-lectE4 13

Control structures (if, again)

• In general, an if looks like:

if <something that is true or false>
[

:
some instructions

:
]

cis1.0-fall2006-parsons-lectE4 14

Control structures (if, more)

• The true/false bit can be more complicated

• For example:

to-kill-red-sheep
ask sheep

[
if (color = red) and (sheep-count > 200)

[die]
]

end

• What is this going to do?
• You can use or as well as of and

cis1.0-fall2006-parsons-lectE4 15

Control structures (if, finally)

• We can use not to change the condition of an if around:
• For example:

to-kill-red-sheep
ask sheep

[
if (color = red) and not (sheep-count > 200)

[die]
]

end

• What is this going to do?

cis1.0-fall2006-parsons-lectE4 16

Control structures (ifelse)

• We can add to the if with an alternative set of instructions if the
true/false bit is false:

to-kill-red-sheep
ask sheep

[
ifelse (color = red) and (sheep-count > 200)

[die]
[set color blue]

]
end

• How would you change this so that only the red sheep became
blue?

cis1.0-fall2006-parsons-lectE4 17

Control structures (nested if)
• We can put one if “inside” another:

to-kill-red-sheep
ask sheep

[
if (color = red)

[
ifelse (sheep-count > 200)

[die]
[set color blue]

]
]

end

• Now, if there are less than 200 sheep, the red ones will turn blue.

cis1.0-fall2006-parsons-lectE4 18

Control structures (repeat)

• Sometimes we want to have actions happen several times over.

• We use a repeat to do this.

to cull-sheep how-many-to-kill
repeat how-many-to-kill

[
ask one-of sheep

[die]
]

end

• Look familiar?

cis1.0-fall2006-parsons-lectE4 19

Control structures (repeat, repeated)

• In general, an repeat looks like:

repeat <however many times you want>
[

:
some instructions

:
]

cis1.0-fall2006-parsons-lectE4 20

Summary

• This lecture talked about some of the computer science ideas
behind Netlogo.

– Procedures
– Functions
– Control structures

cis1.0-fall2006-parsons-lectE4 21

