
UNSOLVABILITY AND THE HALTING PROBLEM

Today

• The halting problem
• Computability and solvability

• Feasibility

cis1.0-fall2006-parsons-lectG3 2

The halting problem

• A loop is a set of instructions that repeats several times
• There are 3 kinds of loop

– counter-controlled
– condition-controlled
– forever

• These concepts are the same in any computer programming
language!

cis1.0-fall2006-parsons-lectG3 3

• Here is an example in computer pseudo-code:

x=0;
do 3 times
{
add 1 to x

}

• How many times does this loop execute?

• What is the value of x when this code completes?

cis1.0-fall2006-parsons-lectG3 4

• Another example:

x=3;
while (x > 0)
{
subtract 1 from x;

}

• How many times does this loop execute?

• What is the value of x when this completes?

cis1.0-fall2006-parsons-lectG3 5

• And another example:

x=1;
while (x < 5)
{
y = x;

}

• How many times does this loop execute?

• What is the value of x when this completes?

cis1.0-fall2006-parsons-lectG3 6

• A program containing an infinite loop will run forever.
• It will never HALT or TERMINATE.

• This is like setting up a “forever” button in Netlogo.
• When we use a “forever” button, don’t know if the program will

halt.

– Netlogo will try to keep the program running once we press
the button; but

– The programmer may have included a “halt” instruction.

• This is called the halting problem in computer science.

– Being able to look at a computer program and determine if it
will ever halt (stop).

cis1.0-fall2006-parsons-lectG3 7

• Sometimes, whether a program stops or not depends on input
that it receives.

– Like your program receiving input from the user.
• here is an example:

myProgram(input: x) {
while (x > 0) {

add 1 to x;
}

}

• How many times does this loop execute if x = 0?
• How many times does this loop execute if x = 1?

cis1.0-fall2006-parsons-lectG3 8

Computability

• A problem is computable if it is possible to write a computer
program that can solve it.

• A non-computable problem is also called non-solvable.

• Is the halting problem computable?
• In other words, can we write a computer program that will

determine if any computer program and its input will halt?

• How would you answer this question?
• Could you try running the program?

– What if it never halted?

cis1.0-fall2006-parsons-lectG3 9

• Suppose we wrote a program (“A”) that would take two inputs:

– Another program “P”; and
– the input “X” for the other program

• “A” works like this:

If “P,X” halts, then “A” should run forever.
If “P,X” does not halt, then “A” should halt.

• The paradox is: what if we call program “A” on itself?
• The program cannot produce an answer

– The program neither halts, nor does it not halt.
• Why?

cis1.0-fall2006-parsons-lectG3 10

• This is an example of proof by contradiction.
• We assume that a program does exist that can solve the halting

problem; then we show that it cannot possibly exist.
• Computability in general is an important question.

• It was considered by concerned mathematicians even before
digital computers were developed!

• In the 1930’s, much work was devoted to this.
• Ihe Church-Turing thesis (1940’s) states basically that any

computation that can be defined in an algorithm can be
processed on a computer.

• Named after Alonzo Church and Alan Turing.

cis1.0-fall2006-parsons-lectG3 11

Alan Turing

cis1.0-fall2006-parsons-lectG3 12

Feasibility

• Even if a problem is computable, it is not always feasible to write a
program to compute it.

• Sometimes it takes too long to solve a problem.
• A nice example comes from robot soccer:

• A robot might be able to find the ball using a complicated
algorithm, but if it takes too long, the soccer game will be over!

cis1.0-fall2006-parsons-lectG3 13

• Could you write a program that could count the number of
atoms in the universe?

– The number of atoms is estimated to be about 10
80

• Suppose it took 1 second to count one atom.

• How many seconds would the program need to run to count all
of them?

• Here’s another way to look at it.
• How many atoms could the program count in a year?

num atoms per year
= 60sec/min × 60min/hour × 24hours/day × 365days/year
= 31, 536, 000sec
= 3x10

7

how does that compare to 10
80??

cis1.0-fall2006-parsons-lectG3 14

